

What Is the Link Between Vascular Dysregulation and Glaucoma?

Matthias C. Grieshaber, MD, FEBO, Maneli Mozaffarieh, MD, and Josef Flammer, MD

Department of Ophthalmology, University Hospital Basel, Basel, Switzerland

Abstract. The need of blood flow to different organs varies rapidly over time which is why there is sophisticated local regulation of blood flow. The term dysregulation simply means that blood flow is not properly adapted to this need. Dysregulative mechanisms can lead to an over- or underperfusion. A steady overperfusion may be less critical for long-term damage. A constant underperfusion, however, can lead to some tissue atrophy or in extreme situations to infarction. Unstable perfusion (underperfusion followed by reperfusion) leads to oxidative stress. There are a number of causes that lead to local or systemic vascular dysregulation. Systemic dysregulation can be primary or secondary of nature. A secondary dysregulation is due to other autoimmune diseases such as rheumatoid arthritis, giant cell arteritis, systemic lupus erythematodes, multiple sclerosis, colitis ulcerosa, or Crohns disease. Patients with a secondary vascular dysregulation normally have a high level of circulating endothelin-1 (ET-1). This increased level of ET-1 leads to a reduction of blood flow both in the choroid and the optic nerve head but has little influence on autoregulation. In contrast, primary vascular dysregulation has little influence on baseline ocular blood flow but interferes with autoregulation. This, in turn, leads to unstable oxygen supply, which seems to be a relevant component in the pathogenesis of glaucomatous optic neuropathy. (Surv Ophthalmol 52:S144-S154, 2007. © 2007 Elsevier Inc. All rights reserved.)

Key words. drug sensitivity • endothelin-1 • feeling of thirst • glaucoma • PVD • sleep behavior • SVD • vascular dysregulation

The main function of blood flow is to ensure adequate supply of oxygen and nutrients to the tissue in our body. The overall blood flow is equal to the cardiac output, and its distribution to different organs is regulated by the relative local resistance. The regulation of ocular blood flow (OBF) is complex.³⁰ It adapts to changing metabolic needs during changing visual function, compensates for varying perfusion pressure, and maintains the temperature at the back of the eye constant.¹⁵ Many systems, such as endothelial cell layer, circulating hormones, and the autonomic nervous system are, among others, involved in this regulation. It is obvious that the more complex the regulative system (e.g., in the eye), the more susceptible it is for dysregulation and the more dramatic the potential for damage. Dysregulation of the resistance, in other

words, of the blood vessels, denotes an inappropriate local regulation of arteries, veins, and capillaries.³¹ As a consequence, local blood supply does not correspond to the local demand. This can imply over- or underperfusion and may result in a heterogeneous flow. Although it is currently less clear what degree of overperfusion is detrimental to the tissue,⁸⁰ underperfusion may be harmful and can lead in extreme situations even to infarctions. Thus, more attention is paid to underperfusion. Local reduction of blood flow is either due to an insufficient vasodilatation if needed or due to an inappropriate vasoconstriction (vasospasm). This condition is called vascular dysregulation and can occur globally, involving many different organs simultaneously or sequentially. Vascular dysregulation can be classified as primary vascular dysregula-

VASCULAR DYSREGULATION AND GLAUCOMA

tion (PVD) and secondary vascular dysregulation (SVD).³¹ This review aims to summarize findings of vascular dysregulation relevant to eye diseases.

Ocular Blood Flow (OBF)

In the following sections we will discuss the regulation of blood flow, in particular, the autoregulation as it is relevant to the pathogenesis of glaucomatous optic neuropathy (GON). In terms of mechanisms, we particularly emphasize the role of the endothelium cell layer, as there are indications that the major cause of primary vascular dysregulation is a vascular endotheliopathy.^{16,68,84,94}

REGULATION OF OCULAR BLOOD FLOW

The functions of the regulation of OBF are to adjust to changes in perfusion pressure (autoregulation), to keep the temperature of the back of the eye constant (thermoregulation), and to adapt to neural functions (neurovascular coupling).⁵⁰ Moreover, the circulation in the eye is regulated differently in different tissues. The retina is regulated mainly by the endothelial cells and by the neural and glial cells.¹¹⁵ The choroid is regulated mainly by the autonomic nervous system and circulating hormones.^{11,127} The blood flow in the optic nerve head (ONH) is regulated mainly by endothelial cells and circulating hormones.¹²⁵

AUTOREGULATION

Autoregulation is defined as the component of regulation that compensates for variation in perfusion pressure. It functions sufficiently only within a certain range of perfusion pressure.^{71,93,113,115,125} Several systems are involved in autoregulation, such as myogenic response, metabolic mechanisms, and endothelial cell function.^{32,62,110}

ENDOTHELIUM-DERIVED VASOACTIVE FACTORS (EDVF)

The vascular endothelium is a confluent monolayer of flattened cells that lines the inner surface of the vasculature. The layer is not just a barrier but also an active regulator of vascular tone.³⁴ Endothelial cells function like a relay-station receiving physical information (e.g., sheer stress), chemical information (e.g., oxygen tension), and biological information (e.g., hormones). All of this information is integrated, giving rise to production and release of endothelial-derived vasoactive factors (EDVFs).⁵⁸ The EDVFs work in concert with other systems, such as the autonomic nervous system. The key EDVFs are nitric oxide (NO), endothelin-1 (ET-1), and prostacyclin (PGI2).^{49,57,59} There is a basal production of

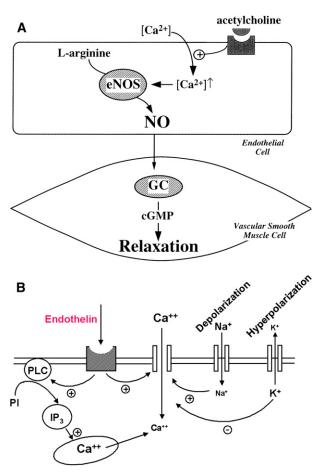


Fig. 1. A: Schematic representation of the nitric oxide synthase/guanylate cyclase pathway in a blood vessel wall. In endothelial cells nitric oxide (NO) is synthesized from Larginine via the activation of a calcium (Ca^2+) -dependent nitric oxide synthase (NOS). NO production can be inhibited by false L-arginine analogs, such as L-N Gmonomethyl arginine (L-NAME). In vascular smooth muscle cells, NO activates a soluble guanylate cyclase (sGC), which increases 3'5'-cyclic guanylate cyclase (cGMP) leading eventually to a relaxation. Receptor-operated agonists (R), such as acetylcholine (Ach) can stimulate the production of NO. (Reprinted from Haefliger et al⁵⁷ with permission of Progress in Retinal and Eye Research.) B: The calcium channels are regulated in part by both the potential of the cell membrane and the G-proteins. The G-proteins, in turn, are activated by various hormone receptors. (Reprinted with permission from Flammer J, Die Behandlung des Normaldruckglaukoms mit Kalziumantagonisten. Search on Glaucoma 5:3–7, 1997.)

NO; a stimulation of endothelial cells (e.g., with acetylcholine) leads to an additional production of NO. NO diffuses into neighboring cells, including pericytes and smooth muscle cells. NO stimulates the guanylate cyclase, causing an increase in cyclic guanine monophosphate (cGMP) and thereby leading to relaxation of smooth muscle cells and pericytes, which, in turn, leads to vasodilation (Fig. 1).^{60,136} The most important vasoconstrictive

GRIESHABER ET AL

factor is ET-1. ET-1 is a 21-amino acid peptide that is secreted mostly abluminally but, to some extent also intraluminally, leading to a certain concentration of ET-1 in the circulating blood. There are two ET receptors, namely, ET-A and ET-B. The stimulation of ET receptors on smooth muscle cells or pericytes increases cytoplasmic calcium, both by influx into the cell, as well as by liberation of calcium from the internal storage. This, in turn, leads to constriction of the vessels (Fig. 1).⁸⁷ If the concentration of ET-1 is even higher, it leads to vasospasm.¹³⁸

CIRCULATING HORMONES

Vasoactive molecules are also found in the circulating blood. A clinically important example is angiotensin- I, which is locally converted to angiotensin- II.^{86,116,124} In addition, all the EDVFs discussed previously are also partially secreted abluminally, and therefore, act not only locally but also systemically. The effect of circulating molecules depends on the site of action. Serotonin dilates vessels by stimulating S1-receptors on endothelial cells, whereas it constricts vessels when stimulating S2- receptors on smooth muscle cells. In a similar way ET-1 has a slight dilatation effect when stimulating receptors of endothelial cells, but leads to vasoconstriction when it has access to receptors of the smooth muscle cells. Intravenous infusion of ET-1 in young healthy people therefore leads to major reduction of choroidal blood flow (fenestrated capillaries),¹³⁰ but does not change the brain circulation. In conditions where the blood-brain barrier is disturbed-for example, in an acute plaque of a multiple sclerosis patient-circulating ET-1 leads to vasoconstriction. As mentioned previously, it also leads to a reduction of blood flow in the choroid even in healthy people. Interestingly, the ONH, although anatomically part of CNS, is not fully protected by barriers: First, there is some diffusion from the surrounding choroid^{5,13,25,67,133} and second, the blood vessels in the ONH, originating from the ciliary circulation, have weaker barrier function than the capillaries in other parts of the CNS or the retina.45,69 This explains why circulating hormones such as angiotensin II or ET-1 have a major impact on ONH circulation¹²⁴ that is not present in the retina or in the CNS as long as the vessels are intact.

Vascular Dysregulation

As mentioned previously, a regulation of circulation that is not properly adapted to the local needs is defined as vascular dysregulation. Such a dysregulation can be local (e.g., after rupture of an artherosclerotic plaque) or global. We will now focus on systemic dysregulation, which can be primary or secondary in nature.

PRIMARY VASCULAR DYSREGULATION SYNDROME (PVD SYNDROME)

Subjects with a PVD syndrome have an inborn tendency to respond differently with their vascular system to various stimuli; for this reason the terminology PVD.³¹ They also exhibit other differences (e.g., sleep behavior, feeling of thirst, drug sensitivity). Although they can hardly be distinguished from others under baseline conditions, they respond differently to stimuli such as cold, mechanical or psychological stress, and so forth.^{10,26,85,135} Among the most prominent pathological reactions are the vasoconstrictions, leading to the previously used term *vasospastic syndrome*.

The PVD syndrome occurs more frequently in women than in men,¹⁰⁹ in Japanese than in whites,^{4,91} and in academics than in blue collar workers.⁶³ The symptoms are normally first manifested in puberty and mitigate with age.^{27,70} In women, a marked drop of symptoms is often observed after menopause but can re-exacerbate when women with PVD receive hormonal-replacement therapy,⁷³ although others did not find such a relation to sexhormones in patients with Raynaud syndrome.² It remains unclear why women suffer more often from PVD than men. Possibly, female hormonal and hereditary factors, such as change of the endocrine function with age, might be related to the higher occurrence of PVD in women.

PVD AND BLOOD PRESSURE

Patients with PVD tend, on average, to have low blood pressure, especially at night and particularly when they are young.⁹⁹ Some of them suffer from orthostatic hypotension. The major cause for systemic hypotension in these patients is a reduced reabsorption of sodium in the proximal tubule of the kidneys.¹⁰⁶ In other words, subjects with PVD lose more salt in the kidneys. This abnormal renal sodium handling, which is ET-1 dependent, has also been demonstrated in patients with PVD and normal-tension glaucoma.¹⁰⁵ The nocturnal non-dipping and over-dipping,¹⁰⁰ however, are less a consequence of PVD but rather a manifestation of a dysfunction of the autonomic nervous system.³³ Other indications for a link between endothelial and autonomic nervous system dysfunctions in PVD are a significant increase in ET-1 levels,⁹⁶ a blunted blood pressure response, and a reduction in ONH blood flow in response to cold provocation.⁴¹

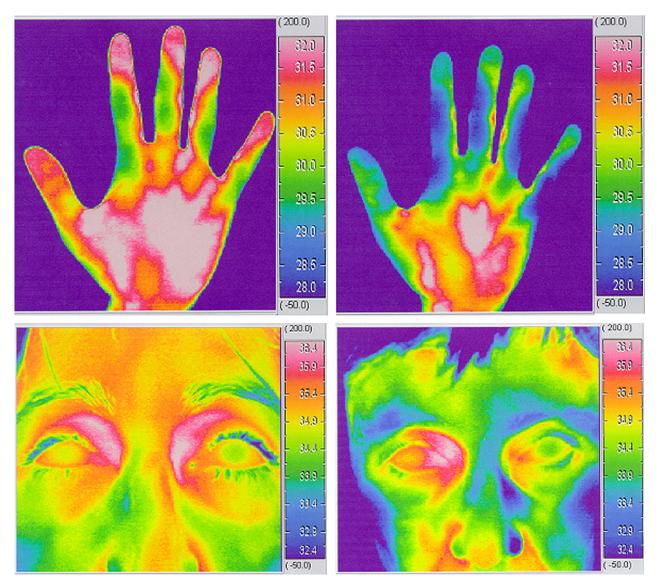
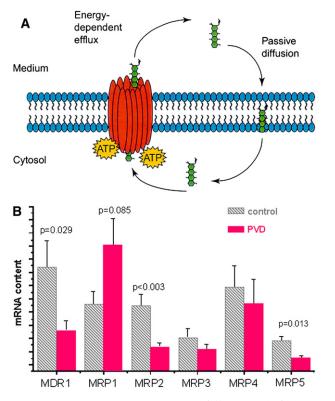


Fig. 2. Thermography. Comparison between a subject without PVD (*left*) and with PVD (*right*) displays a cold face and hand in PVD and a warm picture of a subject without PVD.

PVD AND TEMPERATURE

Cold hands are a leading symptom for PVD;³¹ however, patients with cold hands sometimes do not realize their condition, as they are completely used to it. Shaking a patient's hands often gives sufficient information to the doctor. When temperature is measured (e.g., with thermography; Fig. 2),¹²⁶ temperature differences are even more striking in the legs.⁸¹ This information, however, can less easily be obtained in daily practice.


PVD AND THIRST

People with PVD, on average, have less desire to drink.¹³¹ This phenomenon can be explained by a mild increase in ET-1 having, via prostaglandin- E_{2} , an anti-dipsogenic effect in the center of thirst

(hypothalamus).^{24,129} The average daily intake of fluid, however, is only slightly less than in non-PVD patients.¹³¹ This is due to the fact that these patients drink because they know they need to drink.

PVD AND TRIGGERS

Based on our experience, individuals with PVD, in general, tend to be very particular and diligent. In professional life, they are successful, have often academic degrees, and work often in positions of leadership.²⁷ However, PVD subjects are sensitive in all respects. They respond more intensively when challenged by cold, or mechanical or psychological stress.^{10,26} Although these people are also physically very active, they get cold fast when staying inactive in a cold environment. A mechanical stress, for

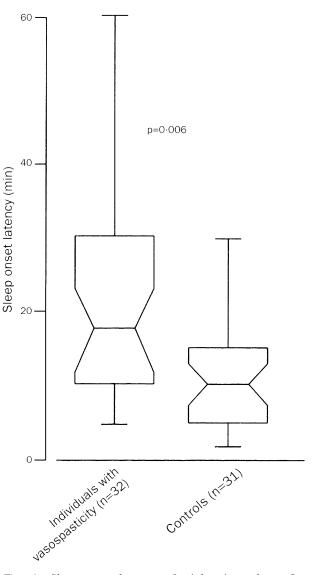


Fig. 3. Drug sensitivity. *A*: Drugs diffuse passively into cells but are pushed out actively by ABC transport proteins. (Reprinted with permission from Johnstone RW et al: Multiple physiological Functions for multidrug transporter L-glycoprotein? Trends Biochem Sci 25:1–6, 2000.) *B*: Gene expression of multidrug resistance (MDR1) and multidrug resistance-associated proteins (MRP isoforms). Mean gene expression of MDR1 and MRP isoform (MRP1 to MRP5) genes in healthy controls and vasospastic persons. Error bars represent the standard error of the mean. Subjects with PVD, although having, on average, the same amount of ABC-transport proteins, reveal large big differences in individual proteins, explaining altered drug sensitivity. (Reprinted from Wunderlich et al¹³⁴ with permission of *Molecular Vision*.)

example, a whiplash trauma, leads to more and longer-lasting symptoms.¹²⁸ When exposed to psychological stress, these subjects respond not only with cold hands but sometimes also with color changes in the face.

PVD AND DRUG SENSITIVITY

People with PVD indicate that they tolerate poorly certain systemic drugs and therefore often prefer complementary medicine, based on our own observation. Indeed, the analysis of ABC transport proteins revealed major differences between PVD and non-PVD subjects explaining the differences in drug sensitivity (Fig. 3).¹³⁴ When treating these patients with systemic drugs such as beta-blockers or calcium channel blockers, a much lower dose can achieve a full pharmacological effect while minimiz-

Fig. 4. Sleep-onset latency of night time sleep. Individuals with PVD have prolonged sleep onset time. Boxes = median, 25th, and 75th percentiles; bars = 10th and 90th percentiles. (Reprinted from Pache et al¹⁰³ with permission of *Lancet*.)

ing side effects. For other classes of drugs, such as painkillers, they need the same or even higher doses to get sufficient effects.²⁷

PVD AND SLEEP BEHAVIOR

Patients with PVD, on average, have a longer sleep-onset time and their sleep is more often interrupted (Fig. 4).¹⁰³ The sleep-onset time depends on the body temperature;²⁰ warm feet are a prerequisite for falling asleep.⁸² Patients with PVD, on average, have colder feet and therefore need longer to warm them up, explaining the prolonged sleep-onset time.⁸³ Correspondingly, warming feet

VASCULAR DYSREGULATION AND GLAUCOMA

TABLE 1

Diseases That Lead to Local or Systemic Vascular Dysregulation

	8
Autoimmune diseases	Multiple sclerosis
	Giant cell arteritis
	Lupus erythematosus
	Antiphospholipid syndrome
	Rheumatoid arthritis
	Pre-eclampsia
Infectious diseases	Some bacterial infections
	(e.g., bacterial meningitis)
	Some viral diseases (e.g. viral
	liver cirrhosis)
	AIDS
Other possible causes	Cerebral hemorrhage
	Head injury
	Anorexia nervosa
	Mitochondriopathies
	Some tumors (e.g., prostrate
	cancer)
	Ulcerative colitis and Crohns
	disease
Drugs (in patients	Adrenaline
having a predisposition)	The chaine
naving a predisposition)	Alpha II Interferon
	Sumatriptane

up, by taking a bath or wearing socks, decreases sleep-onset time. 20

SECONDARY VASCULAR DYSREGULATION (SVD SYNDROME)

A number of diseases, especially inflammatory diseases, lead not only to local but also to systemic vascular dysregulation (Table 1). Molecules involved in the inflammatory processes partially enter the circulation and induce more or less systemic effects. A common pathological finding in such diseases is an increased concentration of ET-1 in the circulating blood.³¹ ET-1 constricts vessels not only directly but also indirectly by increasing the sensitivity to other vasoconstrictive hormones such as norepinephrine, 5-hydroxytryptamine, and angiotensin-II. Under physiological conditions ET-1 is mainly produced by endothelial cells and the level of ET-1 in the circulating blood is low.¹⁰⁸ However, almost any cell in the body can produce ET-1 when it is under stress; for example, synovial cells in rheumatoid arthritis,¹³⁷ or monocytes in HIV²¹ or in multiple sclerosis patients.⁶⁵ An increase in circulating ET-1 markedly reduces blood flow in the eye¹⁰¹ and in the kidney,¹¹⁹ whereas brain circulation is less affected,⁷⁶ unless the blood-brain barrier is disturbed. The fact that SVD is due to changes of vasoactive substances in the circulating blood, and the fact that these circulating molecules have a major impact on OBF, especially in the choroid and in the ONH, is the reason why SVD is relevant to ophthalmologists.

SVD AND MULTIPLE SCLEROSIS (MS)

Based on our own observations, patients with multiple sclerosis (MS) often indicate that they had PVD symptoms before they suffered from MS. Once MS is present, however, most of these patients suffer from SVD with increased levels of ET-1,⁶⁵ reduced OBF,¹⁰¹ cold hands, and reduced feeling of thirst.

SVD AND GIANT CELL ARTERITIS

Giant cell arteritis is an immune-mediated vasculitis affecting large- and medium-sized arteries.¹ The affected vessels can occlude, leading to infarction, especially to arteritic anterior ischemic optic neuropathy (AION).¹²⁰ In contrast to non arteritic AION, patients with giant cell arteritis suffer often from amaurosis fugax before the acute event and the choroidal perfusion is more affected.¹²³ In addition, they often respond to calcium channel blockers and they develop slight excavation of ONH.⁹⁸ This can all be explained by the fact that besides the occlusion of the inflamed vessels, a temporary but marked SVD with high level of ET-1 induces additional symptoms.¹⁰²

SVD AND SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)

Systemic lupus erythematodes (SLE) is a condition of chronic inflammation caused by an autoimmune disease. SLE primarily affects women between 20 and 40 years of age and predisposes not only to Raynaud syndrome but even to myocardial infarction in young people.²³ The vascular occlusions in the eye are partially directly due to the inflammation but to some extent also due to systemic SVD with high level of ET-1.⁶⁶

SVD AND CHRONIC RHEUMATOID ARTHRITIS

Patients with chronic arthritis often suffer from reduced circulation of the eye. The synovial cells produce ET-1, leading to an increased level of circulating ET-1.^{104,137} An anti-inflammatory treatment, therefore, can indirectly also improve OBF.

SVD AND OTHER AUTOIMMUNE DISEASES

Most of the autoimmune diseases, for example, Crohns disease and colitis ulcerosa, lead to SVD with periods of low blood pressure and reduced OBF.^{36,92} Thus, an anti-inflammatory treatment increases blood pressure⁷⁸ and improves OBF.

Diagnosis of Vascular Dysregulation

In the clinical setting, the diagnosis of vascular dysregulation relies mainly on the patient history. The history includes cold hands and feet, decreased feeling of thirst,¹³¹ delayed sleep onset,⁸³ and low blood pressure.⁹⁹ Direct contact of the patient's hands (shaking hands) often yields a sufficient clue for the clinician, in particular if the patient is not aware of having PVD. Thermography is currently used in a research setting to objectify the distribution pattern of the body temperature (Fig. 2).

Clinically unclear cases can be referred to specialized centers for vascular examinations. Nailfold-capillary microscopy, for instance, is of great value in objectifying cold-induced peripheral vas-cular dysregulation.^{37,85,117} The blood flow is measured before, during, and after the cold provocation. The nailfold area is cooled to -15° C. A reduced baseline blood flow velocity, and more characteristically a prolonged flow stop after cold provocation, can be observed in patients with vascular dysregulation.³⁸ Laser Doppler flowmetry (LDF) of the choroid is useful tool to detect vascular dysregulation in the eye. 52,112 The abnormal response of ocular blood flow is evaluated based on the choroidal vascular reaction to isometric hand grip test.⁵⁴ The isometric hand-grip test is a specific, sensitive, reproducible, and non-invasive test of sympathetic function with well-studied reflex pathways.⁷⁷ During the isometric hand-grip test, the subfoveal choroidal blood flow is measured by means of the LDF.40 The choroidal blood flow is usually measured three times-at baseline, and during and few minutes after hand-grip test. A decrease in flow of 10% or more during the handgrip test is considered abnormal.^{54,111} Measurement of plasma ET-1 is helpful to confirm the diagnosis in patients with suspected vascular dysregulation, for example, normal-tension glaucoma patients. However, ET-1 can also be increased in other diseases as discussed above and is not specific for glaucoma. The measurement of plasma ET-1 requires a good laboratory and dependable normal values.⁹⁰

Vascular Dysregulation and Ocular Blood Flow

This review focuses on systemic vascular dysregulation. "Systemic" implies the potential involvement of different organs, including the eye.^{54,56} Although primary and secondary vascular dysregulation have many symptoms in common, their influence on eye circulation is distinctively different. As a result of increased level of vasoactive molecules such as ET-1, SVD leads to a more-or-less constant reduction of OBF, particularly in the choroid and ONH.¹⁰¹ SVD, however, does not essentially interfere with the autoregulation in the retina or in the ONH. Although the origin of SVD is very heterogeneous, its effect on the eye is relatively homogenous. By reducing baseline blood flow, it either leads to no symptoms in the eye or to some visual field reduction and a pale ONH.²⁷ In acute situations such as giant cell arteritis, it can lead to amaurosis fugax and marked reduction of choroidal circulation.

The effect of PVD on OBF is distinctively different. As the concentration of ET-1 in the circulating blood is only mildly increased, the baseline blood flow is only mildly changed.⁷ On the other hand, the regulation of blood flow when challenged is clearly different.^{42,53,64} This indicates that OBF is reduced when patients are stressed psychologically or by coldness and OBF regulation can less efficiently compensate for changes in perfusion pressure (disturbed autoregulation).⁵⁶ In addition, the response to flickering light is reduced (disturbed neurovascular coupling).^{55,114} The velocity of pulse propagation is increased (the vessels are stiffer than in normal eyes), 51,79 and the spatial heterogeneity of the vessel size is increased. 51,79 All this explains why PVD is a major, but SVD only a minor, risk factor for GON. Patients with PVD suffer more often than those with non-PVD from central serous chorioretinopathy, venous occlusion, and arterial occlusion in young age and in glaucoma.46

Vascular Dysregulation and Glaucoma

It has been postulated for decades that ischemia might somehow be involved in the pathogenesis of GON.²⁹ For instance, blood flow velocity is, on average, slower in the retina, in the choroids, 19,46 and in the ONH 47,88,107 in patients with glaucoma, in particular, normal-tension glaucoma. Blood flow is also reduced in retrobulbar vessels^{9,35,74,95,107,118,122} and in peripheral capillaries.^{22,39,61,97} Classical risk factors for atherosclerosis like smoking, dyslipidemia, diabetes, and systemic hypertension^{6,18,89} were astonishingly weakly related to GON. In addition, diseases leading to OBF reduction (e.g., multiple sclerosis), although sometimes leading to atrophy of the ONH, do not lead to a significant excavation of ONH. We therefore postulated some years ago that GON is less linked to a stable reduction of OBF, but rather to an unstable OBF, leading to a repeated mild reperfusion injury.^{27,28} OBF is unstable if either perfusion pressure fluctuates markedly (and thereby exceeds the capacity of autoregulation), or if autoregulation, itself, is disturbed.^{43,48,97} Indeed, a number of studies found autoregulation altered both in normal-tension glaucoma patients and in POAG patients progressing despite a normalized IOP,^{43,121} as the mean ocular perfusion pressure decreased despite the increase in vascular resistivity.⁴³ The major cause of a disturbed autoregulation is a PVD syndrome.42 This PVD, in

turn, seems often to be due to a vascular endotheliopathy.^{8,12,68}

As mentioned previously, subjects with PVD have low blood pressure. Interestingly, both PVD¹⁶ and systemic hypotension have been identified as risk factors for GON and the progression of GON.^{3,6,14,17,44,61,72,75,132} It has been suggested that low blood pressure as well as nocturnal over-dipping increases the probability of visual field deterioration in normal-tension and hightension glaucoma patients despite good IOP control.⁴⁴ Moreover, a prospective long-term study found that progression of visual field defect does not only occur in patients with over-dipping, but also in patients with non-dipping¹³²—indicating that a dip deviating from the physiological range is associated with the progression of glaucoma. Such a lack of the physiologic dipping seems to be an independent risk factor for glaucoma progression.⁷⁵ The observation that both non-dipping and over-dipping are associated with GON indicates that an underlying vascular dysregulation, and not simply a low perfusion pressure, might be causal. PVD can therefore be considered as a risk factor occurring independently of IOP,75,100,132 but acting in concert with IOP by rendering the eye more sensitive to IOP. This explanation is supported by the observation that the presence of GON and its progression is in patients with PVD more closely related to IOP than in glaucoma patients without PVD.^{61,121} In summary, PVD is characterized by an altered regulation of blood flow including autoregulation. This, in turn, may lead to unstable oxygen supply, which seems to be a relevant component in the pathogenesis of GON.

Method of Literature Search

A systematic search of the Medline database using the PubMed Web site for the years 1966 through June 2007 was conducted using the following key words: *autoregulation, blood flow, blood flow regulation, blood pressure, Endothelin-1, endothelium, drug sensitivity, feeling of thirst, glaucoma, nitric oxide, sleep behaviour, vascular dysregulation, vasospasm.* All articles read were in English and German, and when articles in other languages were of relevance, their abstracts in English were read. The Old Medline was searched for articles published between 1953 and 1965 using the same keywords.

References

- Andersson R: Immunological studies in giant cell arteritis. Baillieres Clin Rheumatol 5:405–12, 1991
- 2. Bartelink ML, Wollersheim H, van de Lisdonk E, et al: Raynaud's phenomenon: subjective influence of female sex hormones. Int Angiol 11:309–15, 1992

- Béchetoille A, Bresson-Dumont H: Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol 232:675–9, 1994
- Beltrame JF, Sasayama S, Maseri A: Racial heterogeneity in coronary artery vasomotor reactivity: differences between Japanese and Caucasian patients. J Am Coll Cardiol 33: 1442–52, 1999
- Ben-Sira I, Riva CE: Fluorescein diffusion in the human optic disc. Invest Ophthalmol 14:205–11, 1975
- Bonomi L, Marchini G, Marraffa M, et al: Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 107:1287–93, 2000
- Branca F, Orgül S, Zawinka C, et al: Retinal vascular diameter in young subjects with a vasospastic propensity. Graefes Arch Clin Exp Ophthalmol 244:454–9, 2006
- Buckley C, Hadoke PW, Henry E, et al: Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol 86:227–32, 2002
- Cellini M, Possati GL, Profazio V, et al: Color Doppler imaging and plasma levels of endothelin-1 in low-tension glaucoma. Acta Ophthalmol Scand 224;(Suppl):11–3, 1997
- Chai E, Goldberg I, Chia A, et al: Visual field responses to a hand vibration stimulus. Surv Ophthalmol 43(Suppl 1): S79–86, 1999
- 11. Chou P, Lu DW, Chen JT: Bilateral superior cervical ganglionectomy increases choroidal blood flow in the rabbit. Ophthalmologica 214:421-5, 2000
- Cleary C, Buckley CH, Henry E, et al: Enhanced endothelium derived hyperpolarising factor activity in resistance arteries from normal pressure glaucoma patients: implications for vascular function in the eye. Br J Ophthalmol 89:223–8, 2005
- Cohen AI: Is there a potential defect in the blood-retinal barrier at the choroidal level of the optic nerve canal? Invest Ophthalmol 12:513–9, 1973
- Collignon N, Dewe W, Guillaume S, et al: Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol 22:19–25, 1998
- Delaey C, Van De Voorde J: Regulatory mechanisms in the retinal and choroidal circulation. Ophthalmic Res 32:249– 56, 2000
- Delaney Y, Walshe TE, O'Brien C: Vasospasm in glaucoma: clinical and laboratory aspects. Optom Vis Sci 83:406–14, 2006
- 17. Demailly P, Cambien F, Plouin PF, et al: Do patients with low tension glaucoma have particular cardiovascular characteristics? Ophthalmologica 188:65–75, 1984
- Dielemans I, Vingerling JR, Wolfs RC, et al: The prevalence of primary open-angle glaucoma in a population-based study in The Netherlands. The Rotterdam Study. Ophthalmology 101:1851–5, 1994
- Duijm HF, van den Berg TJ, Greve EL: Choroidal haemodynamics in glaucoma. Br J Ophthalmol 81:735–42, 1997
- Ebben MR, Spielman AJ: The effects of distal limb warming on sleep latency. Int J Behav Med 13:221–8, 2006
- Ehrenreich H, Rieckmann P, Sinowatz F, et al: Potent stimulation of monocytic endothelin-1 production by HIV-1 glycoprotein 120. J Immunol 150:4601–9, 1993
- Emre M, Orgül S, Gugleta K, et al: Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol 88:662–6, 2004
- Fearon WF, Cooke JP: Acute myocardial infarction in a young woman with systemic lupus erythematosus. Vasc Med 1:19–23, 1996
- Fitzsimons JT: Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686, 1998
- Flage T: Permeability properties of the tissues in the optic nerve head region in the rabbit and the monkey. An ultrastructural study. Acta Ophthalmol (Copenh) 55:652– 64, 1977
- Flammer J: Psychophysical mechanisms and treatment of vasospastic disorders in normal-tension glaucoma. Bull Soc Belge Ophtalmol 244:129–34, 1992

- Flammer J: [Glaucoma; A Guide for the Patient; An Introduction for Care-Providers; A Quick Reference]. Gottingen, Germany, Bern, Hogrefe and Huber Publishers, 2006. ed 3
- Flammer J, Haefliger IO, Orgül S, et al: Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma 8:212–9, 1999
- Flammer J, Mozaffarieh M: What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol 52(Suppl 2):S162–73, 2007
- Flammer J, Orgül S, Costa VP, et al: The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–93, 2002
- Flammer J, Pache M, Resink T: Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res 20:319–49, 2001
- Florence G, Seylaz J: Rapid autoregulation of cerebral blood flow: a laser-Doppler flowmetry study. J Cereb Blood Flow Metab 12:674–80, 1992
- Freitas J, Teixeira E, Santos R, et al: Circadian heart rate and blood pressure variability in autonomic failure. Rev Port Cardiol 24:241–9, 2005
- Furchgott RF, Zawadzki JV: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–6, 1980
- Galassi F, Sodi A, Ucci F, et al: Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol 121:1711–5, 2003
- Gasser P, Affolter H, Schuppisser JP: The role of nailbed vasospasm in Crohn's disease. Int J Colorectal Dis 6:147–51, 1991
- Gasser P, Flammer J: Blood-cell velocity in the nailfold capillaries of patients with normal-tension and hightension glaucoma. Am J Ophthalmol 111:585–8, 1991
- Gasser P, Flammer J, Guthauser U, et al: Do vasospasms provoke ocular diseases? Angiology 41:213–20, 1990
- Gasser P, Orgül S, Dubler B, et al: Relation between blood flow velocities in the ophthalmic artery and in nailfold capillaries. Br J Ophthalmol 83:505, 1999
- Geiser MH, Riva CE, Diermann U: [Measuring choroid blood flow with a new confocal laser Doppler device]. Klin Monatsbl Augenheilkd 214:285–7, 1999
- 41. Gherghel D, Hosking SL, Cunliffe IA: Abnormal systemic and ocular vascular response to temperature provocation in primary open-angle glaucoma patients: a case for autonomic failure? Invest Ophthalmol Vis Sci 45:3546–54, 2004
- 42. Gherghel D, Orgül S, Dubler B, et al: Is vascular regulation in the central retinal artery altered in persons with vasospasm? Arch Ophthalmol 117:1359–62, 1999
- 43. Gherghel D, Orgūl S, Gugleta K, et al: Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage. Am J Ophthalmol 130:597–605, 2000
- Graham SL, Klistorner A: The diagnostic significance of the multifocal pattern visual evoked potential in glaucoma. Curr Opin Ophthalmol 10:140–6, 1999
- Grieshaber MC, Flammer J: Does the blood-brain barrier play a role in glaucoma? Surv Ophthalmol 52(Suppl 2): S115-21, 2007
- Grunwald JE, Piltz J, Hariprasad SM, et al: Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 39:2329–36, 1998
- Grunwald JE, Piltz J, Hariprasad SM, et al: Optic nerve blood flow in glaucoma: effect of systemic hypertension. Am J Ophthalmol 127:516–22, 1999
- Grunwald JE, Riva CE, Stone RA, et al: Retinal autoregulation in open-angle glaucoma. Ophthalmology 91:1690–4, 1984
- Gryglewski RJ, Moncada S, Palmer RM: Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br J Pharmacol 87:685–94, 1986
- Gugleta K, Fuchsjäger-Mayrl G, Orgül S: Is neurovascular coupling of relevance in glaucoma? Surv Ophthalmol 52(Suppl 2):S139–43, 2007

- 51. Gugleta K, Kochkorov A, Katamay R, et al: On pulse-wave propagation in the ocular circulation. Invest Ophthalmol Vis Sci 47:4019–25, 2006
- Gugleta K, Orgül S, Flammer I, et al: Reliability of confocal choroidal laser Doppler flowmetry. Invest Ophthalmol Vis Sci 43:723–8, 2002
- Gugleta K, Orgül S, Hasler P, et al: Circulatory response to blood gas perturbations in vasospasm. Invest Ophthalmol Vis Sci 46:3288–94, 2005
- Gugleta K, Orgül S, Hasler PW, et al: Choroidal vascular reaction to hand-grip stress in subjects with vasospasm and its relevance in glaucoma. Invest Ophthalmol Vis Sci 44: 1573–80, 2003
- Gugleta K, Zawinka C, Rickenbacher I, et al: Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 47:4034–41, 2006
- Guthauser U, Flammer J, Mahler F: The relationship between digital and ocular vasospasm. Graefes Arch Clin Exp Ophthalmol 226:224–6, 1988
- 57. Haefliger IO, Flammer J, Bény JL, et al: Endotheliumdependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res 20:209–25, 2001
- Haefliger IO, Flammer J, Lüscher TF: Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci 34:1722–30, 1993
- Haefliger IO, Flammer J, Lüscher TF: Nitric oxide and endothelin-1 are important regulators of human ophthalmic artery. Invest Ophthalmol Vis Sci 33:2340–3, 1992
- Haefliger IO, Meyer P, Flammer J, et al: The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology? Surv Ophthalmol 39:123–32, 1994
- 61. Hafez AS, Bizzarro R, Descovich D, et al: Correlation between finger blood flow and changes in optic nerve head blood flow following therapeutic intraocular pressure reduction. J Glaucoma 14:448–54, 2005
- Halpern W, Osol G: Influence of transmural pressure of myogenic responses of isolated cerebral arteries of the rat. Ann Biomed Eng 13:287–93, 1985
- Harada N, Ueda A, Takegata S: Prevalence of Raynaud's phenomenon in Japanese males and females. J Clin Epidemiol 44:649–55, 1991
- Hasler PW, Orgül S, Gugleta K, et al: Vascular dysregulation in the choroid of subjects with acral vasospasm. Arch Ophthalmol 120:302–7, 2002
- Haufschild T, Shaw SG, Kesselring J, et al: Increased endothelin-1 plasma levels in patients with multiple sclerosis. J Neuroophthalmol 21:37–8, 2001
- Hauser D, Pokroy R, Bukelman A, et al: Ocular ischemia associated with uncontrolled hypertension in lupus erythematosus. Can J Ophthalmol 39:83–4, 2004
- 67. Hayreh SS: Fluids in the anterior part of the optic nerve in health and disease. Surv Ophthalmol 23:1–25, 1978
- Henry E, Newby DE, Webb DJ, et al: Altered endothelin-1 vasoreactivity in patients with untreated normal-pressure glaucoma. Invest Ophthalmol Vis Sci 47:2528–32, 2006
- Hofman P, Hoyng P, vanderWerf F, et al: Lack of blood-brain barrier properties in microvessels of the prelaminar optic nerve head. Invest Ophthalmol Vis Sci 42:895–901, 2001
- Iwata H, Makimo S, Miyashita K: [Prevalence of Raynaud's phenomenon in individuals not using vibrating tools]. Sangyo Igaku 29:500–3, 1987
- Johnson PC: Autoregulation of blood flow. Circ Res 59: 483–95, 1986
- Kaiser HJ, Flammer J, Graf T, et al: Systemic blood pressure in glaucoma patients. Graefes Arch Clin Exp Ophthalmol 231:677–80, 1993
- Kaiser HJ, Meienberg O: Deterioration or onset of migraine under oestrogen replacement therapy in the menopause. J Neurol 240:195–6, 1993
- Kaiser HJ, Schoetzau A, Stumpfig D, et al: Blood-flow velocities of the extraocular vessels in patients with hightension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 123:195–6, 1997

VASCULAR DYSREGULATION AND GLAUCOMA

- Kashiwagi K, Hosaka O, Kashiwagi F, et al: Systemic circulatory parameters. comparison between patients with normal tension glaucoma and normal subjects using ambulatory monitoring. Jpn J Ophthalmol 45:388–96, 2001
- 76. Katona E, Settakis G, Varga Z, et al: Both nitric oxide and endothelin-1 influence cerebral blood flow velocity at rest and after hyper- and hypocapnic stimuli in hypertensive and healthy adolescents. Kidney Blood Press Res 29:152–8, 2006
- Khurana RK, Setty A: The value of the isometric hand-grip test-studies in various autonomic disorders. Clin Auton Res 6:211–8, 1996
- Kochar MS: Management of postural hypotension. Curr Hypertens Rep 2:457–62, 2000
- Kochkorov A, Gugleta K, Zawinka C, et al: Short-term retinal vessel diameter variability in relation to the history of cold extremities. Invest Ophthalmol Vis Sci 47:4026–33, 2006
- Kohner EM, Patel V, Rassam SM, et al: Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 44:603–7, 1995
- Krauchi K: How is the circadian rhythm of core body temperature regulated? Clin Auton Res 12:147–9, 2002
- Kräuchi K, Cajochen C, Werth E, et al: Functional link between distal vasodilation and sleep-onset latency? Am J Physiol Regul Integr Comp Physiol 278:R741–8, 2000
- Kråuchi K, Cajochen C, Werth E, et al: Warm feet promote the rapid onset of sleep. Nature 401:36–7, 1999
- Lüscher TF, Dohi Y, Tanner FC, et al: Endotheliumdependent control of vascular tone: effects of age, hypertension and lipids. Basic Res Cardiol 86(Suppl 2): 143–58, 1991
- Mahler F, Saner H, Würbel H, et al: Local cooling test for clinical capillaroscopy in Raynaud's phenomenon, unstable angina, and vasospastic visual disorders. Vasa 18:201–4, 1989
- Meyer P, Flammer J, Lüscher TF: Local action of the renin angiotensin system in the porcine ophthalmic circulation: effects of ACE-inhibitors and angiotensin receptor antagonists. Invest Ophthalmol Vis Sci 36:555–62, 1995
- Meyer P, Flammer J, Lüscher TF: Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Invest Ophthalmol Vis Sci 34:3614–21, 1993
- Michelson G, Langhans MJ, Groh MJ: Perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open angle glaucoma. J Glaucoma 5:91–8, 1996
- Mitchell P, Lee AJ, Rochtchina E, et al: Open-angle glaucoma and systemic hypertension: the blue mountains eye study. J Glaucoma 13:319–26, 2004
- Miyauchi T, Masaki T: Pathophysiology of endothelin in the cardiovascular system. Annu Rev Physiol 61:391–415, 1999
- Mocco J, Ransom ER, Komotar RJ, et al: Racial differences in cerebral vasospasm: a systematic review of the literature. Neurosurgery 58:305–14, 2006
- Murch SH, Braegger CP, Sessa WC, et al: High endothelin-1 immunoreactivity in Crohn's disease and ulcerative colitis. Lancet 339:381-5, 1992
- 93. Nagel E, Vilser W, Lanzl I: Dorzolamide influences the autoregulation of major retinal vessels caused by artificial intraocular pressure elevation in patients with POAG: a clinical study. Curr Eye Res 30:129–37, 2005
- 94. Nakamura M, Yoshida H, Arakawa N, et al: Endotheliumdependent vasodilator response is augmented in peripheral resistance vessels of patients with vasospastic angina. Cardiology 92:85–92, 1999
- Nicolela MT, Drance SM, Rankin SJ, et al: Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss. Am J Ophthalmol 121:502–10, 1996
- Nicolela MT, Ferrier SN, Morrison CA, et al: Effects of coldinduced vasospasm in glaucoma: the role of endothelin-1. Invest Ophthalmol Vis Sci 44:2565–72, 2003

- O'Brien C, Butt Z: Blood flow velocity in the peripheral circulation of glaucoma patients. Ophthalmologica 213: 150–3, 1999
- Orgül S, Gass A, Flammer J: Optic disc cupping in arteritic anterior ischemic optic neuropathy. Ophthalmologica 208: 336–8, 1994
- Orgül S, Kaiser HJ, Flammer J, et al: Systemic blood pressure and capillary blood-cell velocity in glaucoma patients: a preliminary study. Eur J Ophthalmol 5:88–91, 1995
- Pache M, Dubler B, Flammer J: Peripheral vasospasm and nocturnal blood pressure dipping-two distinct risk factors for glaucomatous damage? Eur J Ophthalmol 13:260-5, 2003
- Pache M, Kaiser HJ, Akhalbedashvili N, et al: Extraocular blood flow and endothelin-1 plasma levels in patients with multiple sclerosis. Eur Neurol 49:164–8, 2003
- 102. Pache M, Kaiser HJ, Haufschild T, et al: Increased endothelin-1 plasma levels in giant cell arteritis: a report on four patients. Am J Ophthalmol 133:160–2, 2002
- 103. Pache M, Kräuchi K, Cajochen C, et al: Cold feet and prolonged sleep-onset latency in vasospastic syndrome. Lancet 358:125–6, 2001
- 104. Pache M, Schwarz HA, Kaiser HJ, et al: Elevated plasma endothelin-1 levels and vascular dysregulation in patients with rheumatoid arthritis. Med Sci Monit 8:CR616–9, 2002
- Pechere-Bertschi A, Sunaric-Megevand G, Haefliger IO, et al: Renal sodium handling in patients with normal pressure glaucoma. Clin Sci 112:337–44, 2006
- Pechère-Bertschi A, Nussberger J, Biollaz J, et al: Circadian variations of renal sodium handling in patients with orthostatic hypotension. Kidney Int 54:1276–82, 1998
- 107. Piltz-Seymour JR, Grunwald JE, Hariprasad SM, et al: Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol 132:63–9, 2001
- Polak K, Petternel V, Luksch A, et al: Effect of endothelin and BQ123 on ocular blood flow parameters in healthy subjects. Invest Ophthalmol Vis Sci 42:2949–56, 2001
- Prünte-Glowazki A, Flammer J: [Ocular vasospasm. 4: Clinical examples]. Klin Monatsbl Augenheilkd 198:415– 8, 1991
- Rajagopalan S, Dube S, Canty JM: Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter. Am J Physiol 268: H788–93, 1995
- 111. Riva CE, Cranstoun SD, Grunwald JE, et al: Choroidal blood flow in the foveal region of the human ocular fundus. Invest Ophthalmol Vis Sci 35:4273–81, 1994
- 112. Riva CE, Grunwald JE, Petrig BL: Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 27:1706–12, 1986
- 113. Riva CE, Hero M, Titze P, et al: Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 235:618–26, 1997
- 114. Riva CE, Salgarello T, Logean E, et al: Flicker-evoked response measured at the optic disc rim is reduced in ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 45:3662–8, 2004
- 115. Riva CE, Sinclair SH, Grunwald JE: Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21:34–8, 1981
- 116. Roks A, Buikema H, Pinto YM, et al: The renin-angiotensin system and vascular function. The role of angiotensin II, angiotensin-converting enzyme, and alternative conversion of angiotensin I. Heart Vessels 12(Suppl):119–24, 1997
- 117. Saner H, Würbel H, Mahler F, et al: Microvasculatory evaluation of vasospastic syndromes. Adv Exp Med Biol 220:215–8, 1987
- 118. Satilmis M, Orgül S, Doubler B, et al: Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135:664–9, 2003
- Schmetterer L, Dallinger S, Bobr B, et al: Systemic and renal effects of an ET(A) receptor subtype-specific antagonist in healthy subjects. Br J Pharmacol 124:930–4, 1998

- Schmidt D: Ocular ichemia syndrome—a malignant course of giant cell arteritis. Eur J Med Res 10:233–42, 2005
- 121. Schulzer M, Drance SM, Carter CJ, et al: Biostatistical evidence for two distinct chronic open angle glaucoma populations. Br J Ophthalmol 74:196–200, 1990
- Sergott RC, Aburn NS, Trible JR, et al: Color Doppler imaging: methodology and preliminary results in glaucoma. Surv Ophthalmol 38 (Suppl):S65–70, discussion S70–1, 1994
- Slavin ML, Barondes MJ: Visual loss caused by choroidal ischemia preceding anterior ischemic optic neuropathy in giant cell arteritis. Am J Ophthalmol 117:81–6, 1994
- 124. Sossi N, Anderson DR: Effect of elevated intraocular pressure on blood flow. Occurrence in cat optic nerve head studied with iodoantipyrine I 125. Arch Ophthalmol 101:98–101, 1983
- 125. Sossi N, Anderson DR: Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure. Effect of arterial hypertension induced by angiotensin I. Arch Ophthalmol 101:94–7, 1983
- 126. Stefańczyk L, Woźniakowski B, Pietrzak P, et al: Comparison of thermography and Doppler sonography in the evaluation of the cold immersion test in women with excessive vasospastic reaction. Med Sci Monit 13(Suppl 1):121–8, 2007
- 127. Steinle JJ, Krizsan-Agbas D, Smith PG: Regional regulation of choroidal blood flow by autonomic innervation in the rat. Am J Physiol Regul Integr Comp Physiol 279:R202–9, 2000
- Sterling M, Kenardy J: The relationship between sensory and sympathetic nervous system changes and posttraumatic stress reaction following whiplash injury—a prospective study. J Psychosom Res 60:387–93, 2006
- 129. Stocker SD, Stricker EM, Sved AF: Acute hypertension inhibits thirst stimulated by ANG II, hyperosmolality, or hypovolemia in rats. Am J Physiol Regul Integr Comp Physiol 280:R214–24, 2001

- 130. Strenn K, Matulla B, Wolzt M, et al: Reversal of endothelinl-induced ocular hemodynamic effects by low-dose nifedipine in humans. Clin Pharmacol Ther 63:54–63, 1998
- 131. Teuchner B, Orgül S, Ulmer H, et al: Reduced thirst in patients with a vasospastic syndrome. Acta Ophthalmol Scand 82:738–40, 2004
- 132. Tokunaga T, Kashiwagi K, Tsumura T, et al: Association between nocturnal blood pressure reduction and progression of visual field defect in patients with primary openangle glaucoma or normal-tension glaucoma. Jpn J Ophthalmol 48:380–5, 2004
- 133. Tso MO, Shih CY, McLean IW: Is there a blood-brain barrier at the optic nerve head? Arch Ophthalmol 93:815–25, 1975
- Wunderlich K, Zimmerman C, Gutmann H, et al: Vasospastic persons exhibit differential expression of ABCtransport proteins. Mol Vis 9:756–61, 2003
- 135. Yang NI, Hung MJ, Cherng WJ: Coronary artery spasm-related acute coronary syndrome in patients with coexisting spasm of angiographically normal coronary artery and fixed narrowing of the remaining vessels. Angiology 58:156–60, 2007
- 136. Yao K, Tschudi M, Flammer J, et al: Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery. Invest Ophthalmol Vis Sci 32:1791–8, 1991
- 137. Yoshida H, Imafuku Y, Ohhara M, et al: Endothelin-1 production by human synoviocytes. Ann Clin Biochem 35: 290–4, 1998
- Zimmermann M: Endothelin in cerebral vasospasm. Clinical and experimental results. J Neurosurg Sci 41: 139–51, 1997

The authors reported no proprietary or commercial interest in any product mentioned or concept discussed in this article.

Reprint address: Matthias C. Grieshaber, MD, Department of Ophthalmology, University Hospital Basel, Mittlere Strasse 91, P.O. Box, CH- 4031 Basel, Switzerland.