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Introduction

High-throughput platforms for cancer biomarker 
discovery are currently focused largely on genomic 
and proteomic studies. A complementary approach 
consists in comparing the entire metabolome profile 
of clinical samples to detect the significant metabolic 

changes occurring in cancer cells [1]. Metabolomics 
reflects changes in phenotype and thus function, thereby 
representing a powerful tool in addition to genomic 
and proteomic-based approaches to detect cancer 
development [2]. Cancer metabolites can be studied in 
virtually all body fluids including human breath. In this 
context, ‘breathomics’ has recently been defined as the 
metabolomic study of exhaled air mainly focusing on 
the characterization of health-related volatile organic 
compounds (VOCs) [3, 4]. Human breath analysis-
based diagnosis has unique advantages, including 
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Abstract
Breath analysis represents a new frontier in medical diagnosis and a powerful tool for cancer biomarker 
discovery due to the recent development of analytical platforms for the detection and identification 
of human exhaled volatile compounds. Statistical and bioinformatic tools may represent an effective 
complement to the technical and instrumental enhancements needed to fully exploit clinical applications 
of breath analysis. Our exploratory study in a cohort of 14 breast cancer patients and 11 healthy 
volunteers used secondary electrospray ionization-mass spectrometry (SESI–MS) to detect a cancer–
related volatile profile. SESI–MS full-scan spectra were acquired in a range of 40–350 mass-to-charge 
ratio (m/z), converted to matrix data and analyzed using a procedure integrating data pre-processing 
for quality control, and a two-step class prediction based on machine-learning techniques, including a 
robust feature selection, and a classifier development with internal validation. MS spectra from exhaled 
breath showed an individual-specific breath profile and high reciprocal homogeneity among samples, 
with strong agreement among technical replicates, suggesting a robust responsiveness of SESI–MS. 
Supervised analysis of breath data identified a support vector machine (SVM) model including 8 features 
corresponding to m/z 106, 126, 147, 78, 148, 52, 128, 315 and able to discriminate exhaled breath from 
breast cancer patients from that of healthy individuals, with sensitivity and specificity above 0.9.

Our data highlight the significance of SESI–MS as an analytical technique for clinical studies of 
breath analysis and provide evidence that our noninvasive strategy detects volatile signatures that 
may support existing technologies to diagnose breast cancer.
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simplicity, safety, minimal invasiveness, painlessness and 
readily acceptance by patients. Once fully developed, the 
use of such techniques may be particularly appropriate 
not only in early diagnosis, but also in on- and off-
line management of pediatric patients, in all medical 
conditions requiring frequent diagnostic assessments 
and in monitoring therapeutic protocols or during the 
surgical procedures [5, 6]. In breast cancer (BC), about 
60% of diagnosed invasive BCs remain localized at 
the time of diagnosis and the 5-year survival is nearly 
100%; however, survival rates drop to 85% and 25% if 
regional or distal tissue invasion occurs, respectively [7]. 
Noninvasive identification of molecular markers that 
pinpoint small lesions, invisible by imaging techniques, 
could greatly improve the cure rate of BC and reduce 
its related mortality. Indeed, reports indicate that 
BC can be detected by canine olfaction [8] and by gas 
chromatography (GC)/ mass spectrometry (MS) [9].

Interest in studies aimed at identifying clinically rel-
evant exhaled compounds, as pioneered by Pauling et al 
[10], has led to a significant development of appropriate 
analytical techniques for the detection and identifica-
tion of human exhaled VOCs [11–14]. One such tech-
nique, secondary electrospray ionization MS (SESI–
MS) [15, 16], has been shown to efficiently detect trace 
gas-phase compounds in breath or in any other matrix 
in real time [17]. While this technology has recently 
been used to identify bacterial pathogens [18, 19] and to 
characterize potential differences between patients with 
chronic obstructive pulmonary disease [20], dedicated 
statistical and bioinformatic tools that complement the 
technical and instrumental enhancements in analyzing 
breath-derived data are still lacking [21].

Our present study, exploring the value of SESI–MS 
technology together with novel statistical analysis tools 
in cancer biomarker discovery, supports the notion 
that this approach can identify a cancer-related vola-
tile signature able to discriminate exhaled breath of BC 
patients from that of healthy controls.

Materials and methods

Subjects
A total of 25 women participated to this study, including 
14 BC patients (cases) and 11 healthy volunteers 
(controls). Before surgery, patients were diagnosed with 
BC following the standard procedure in Fondazione 
IRCCS Istituto Nazionale dei Tumori; none of the 
patients received pharmacological treatment before 
breath sampling. Participants were asked not to smoke, 
eat, drink (except water), brush their teeth or use lipstick 
for at least 2 h before analysis. The study was approved 
by the Medical Ethics Committee of Fondazione IRCCS 
Istituto Nazionale dei Tumori (INT 122/14).

Sample collection
Breath samples were collected on 4 different days 
into 2 L inert plastic bags with a valve and disposable 
mouthpiece (ISB, Gerenzano, Italy) previously 

sterilized at 40 °C and 500 mTorr in the presence of 
H2O2. For 22 subjects (12 cases and 10 controls), two 
replicates were sampled within 5 min. To minimize 
variability in sample collection, storage and processing, 
human breath was sampled within 10 d in the same 
conditions for cases and controls, and plastic bags 
containing human breath were kept at 10ºC until 
analysis by SESI within 2 h of collection [22] using a 
mass spectrometer dedicated exclusively to analysis of 
breath samples.

Mass spectrometry
Mass spectrometer HCT Ion Trap (Bruker Daltonics, 
Billerica, MA, USA) coupled to a laboratory-built SESI 
source [17] was operated in the positive ion mode. Full-
scan spectra were acquired in a range of 40–350 m z−1; 
ion source parameters were capillary 3800 V, dry gas 2 L 
min−1 and temperature 40 °C. The MS instrument was 
slightly modified to allow admission of exhaled breath 
as described [22]. ES buffer (0.1% formic acid in H2O) 
was infused at a flow rate of 130 nL min−1 by a syringe 
pump located outside the instrument [23].

Data acquisition and conversion to matrix
Hystar software (Bruker Daltonics, Breme, Germany) 
was used for data acquisition. MS spectra data of the 
volatile fraction were converted to the ascii xy format 
using Data Analysis software (Bruker Daltonics, Breme, 
Germany) and analyzed using the NIST database 
approach for pattern recognition [24]. Custom Perl 
(www.perl.org/) script served to optimize absolute 
values of each MS signal by approximating m/z and 
eliminating decimal places, with values then included 
in a [feature x sample] matrix.

Statistical and bioinformatic methods
Analyses were carried out using R software, version 
2.15.2 (www.r-project.org/) and Bioconductor (www.
bioconductor.org/). Test results were considered 
significant at p-value  <0.05.

Data pre-processing 
Data pre-processing (figure 1) included five steps. 
Steps I, III, IV refer to analytical procedures for data 
quality control using statistical and bioinformatic 
methods imported from gene expression studies. 
Step I involved assessment of concordance between 
technical replicates using concordance and Bland–
Altman plots [25] and estimation of the Lin’s 
concordance correlation coefficient (CCC) [26] 
with the corresponding bootstrap 95% confidence 
interval [27], based on a user-defined R function (f.
concordance, supplementary file S1A), which exploits 
the epi.ccc function included in the epiR package. 
The Bland–Altman plot identified possible outliers, 
i.e. replicates outside the confidence bands, the 
mean of which could be a biased estimate of the true 
value. In step II, features not detected in at least 50% 
of samples were filtered and discarded. Step III was 

J. Breath Res. 9 (2015) 031001

www.perl.org/
www.r-project.org/
www.bioconductor.org/
www.bioconductor.org/


3

Note

data normalization [28] using the quantile method 
(normalize between arrays function in the  Limma 
package) to impose the same empirical feature 
distribution to each subject. Batch effects arising from 
different dates of sample collection (step IV) were 
corrected using the ComBat method (combating batch 
effects when combining batches of gene expression 
microarray data) [29]. The ComBat function in the sva 
R package was used for this task. Dendrograms based 
on hierarchical clustering of subjects before and after 
ComBat correction were generated to visualize the 
effectiveness of adjustment for batch effects. Subjects 
were identified according to dates of sample collection 
(batches); average linkage was used as the linkage 
criterion to construct the hierarchical cluster tree and 
distance was measured as one minus the Spearman 
correlation coefficient [30] such that two subjects 
exhibiting a strong positive correlation are closer, 
possibly reflecting the same feature profile between 
paired subjects. The heatmap.2 function in the gplots 
package was used to perform hierarchical clustering. 
In step V, missing values in feature replicates were 

imputed after data normalization as described by 
Karpievitch et al [31].

Supervised analyses 
Class comparison was performed using the 
nonparametric Wilcoxon–Mann–Whitney test, 
adjusting p-values for multiple testing by the 
Benjamini–Hochberg method [32] to control for 
false-discovery rate (FDR); class prediction involved 
‘bootstrap feature selection’ [33], followed by classifier 
development and its internal validation (figure 1). In the 
first step, 1000 bootstrap samples were drawn from the 
original dataset and the features were robustly ranked 
according to the proportion of bootstrap samples in 
which they were jointly identified as independent class 
predictors by three different classification algorithms, 
i.e. prediction analysis for microarrays (PAM) [34], 
random forest (RF) with Boruta feature selection [35] 
and SVM algorithm with L1-penalisation (L1 SVM) 
[36] or, alternatively, elastic smoothly clipped absolute 
deviation (SCAD) SVM [37]. An egg-shaped plot was 
initially used to summarize the bootstrap-derived 
feature occurrences (nodes) and co-occurrences 
(edge thickness). The larger the node, the more often 
the corresponding feature occurred in the bootstrap 
samples; the thicker the edge between two nodes/
features, the more often they were selected together 
in the bootstrap samples. Bootstrap selection was 
performed using modified doBS and importance 
igraph functions in the bootfs package. To develop 
the cross-validated classifier, we applied linear SVM 
models, well-established machine-learning techniques 
used for high-dimensional data such as ‘omics’ data  
[38, 39]. A linear SVM model, implemented using the 
function svm in the e1071 package, requires the tuning 
of only two parameters (cost parameter and class 
weights). Models were fitted by varying parameters 
and number of included features, forwardly selected 
according to the bootstrap-generated list. Each model 
was then internally validated using a leave-one-out 
cross-validation (LOOCV) procedure to optimize 
parameters and estimate the model classification 
ability by computing sensitivity, specificity and Youden 
index (sensitivity  +  specificity  −  1). The false-positive 
rate (FPR, 1—specificity) and true-positive rate (TPR, 
sensitivity) were graphically represented in the ‘ROC 
space’ plot, which can be seen as a generalization of the 
ROC curve representing the classification performance 
of the different linear SVM models. The final model 
used to develop the classifier was chosen based on both 
best classification performance, as indicated by the 
highest Youden index, and smallest number of features 
included in the model. The heatmap was generated by 
clustering feature values and using the ‘one minus the 
Spearman correlation coefficient’ as distance metric 
and the average linkage as linkage criterion.

‘Feature importance analysis’ was performed by 
generating 1000 permuted data sets and running the 
L1 SVM-based bootstrap selection procedure on each  

Figure 1. Workflow for data pre-processing and supervised 
analyses. SVM, support vector machine; LOOCV, leave-one-
out cross-validation.

J. Breath Res. 9 (2015) 031001
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random data set. The best three features of each selec-
tion were extracted, compared to the features boot-
strap-selected on not permuted original data and the 
co-occurrence in permuted and original datasets were 
calculated.

Results

Exhaled breath from BC patients and healthy controls 
were sampled in duplicate within 2 h before SESI/MS 
analysis. Patients’ breath samples were collected 3–24 h 
before surgery. Histology confirmed the presence of a 
tumor mass at the time of sampling. Supplementary 
file S2 lists the clinical and pathological characteristics 
of patients, revealing consistency in BC consecutive 

cohorts, i.e. average tumor size 2 cm, 64% node-
negative tumors, 71% ER (estrogen receptor) positive, 
and 71% grade I-II.

Data pre-processing
MS spectra from exhaled breath of a subject were 
highly similar in replicates and each participant showed 
an individual-specific breath profile (figure 2(A)), 
consistent with previous studies [22, 40, 41]. Breath 
mass spectra were processed and converted to a final 
matrix including 351 features and 47 samples (16497 
total values). About 17% of values (2838/16497) were 
missing and equally distributed between the first and 
second replicates and between cases and controls, 
suggesting that missing values were missing at random 

Figure 2. Quality control of pre-analytical and analytical procedures in data pre-processing. (A) Evaluation of MS spectra quality 
based on NIST comparison of MS spectra from exhaled breath of two replicates from randomly selected subjects. (B) Concordance 
analysis of replicates based on concordance correlation coefficient (CCC) and corresponding 95% bootstrap confidence interval 
(CI) for each subject.

J. Breath Res. 9 (2015) 031001
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(MAR, supplementary file S3). In step I of data pre-
processing (figure 1), the concordance correlation 
coefficient (CCC, figure 2(B)) for the 22 subjects with 
technical replicates, together with the concordance 
plots and the Bland–Altman plots (supplementary 
file S1B), confirmed the agreement between technical 
replicates (CCC range: 0.89–0.99). Overall, variability 
of SESI–MS measurements was higher for signals in 
the low-abundance region. Based on the concordance 
analysis, the mean of the two replicate values for 
each feature in each sample was calculated and, after 
filtering (step II), 296 features remained for subsequent 
analyses. Based on the above results and considering the 
quality and characteristics of SESI breath data and their 
matrix data structure, statistical and bioinformatic 
tools for data pre-processing and supervised analyses 
of gene expression data were applied. After quantile 
normalization (step III, supplementary file S4A) and 
ComBat correction (step IV), the dendrogram obtained 
from hierarchical clustering indicated grouping of 
samples independent of daily batches (supplementary 
file S4B). Seventy values missing in both replicates and 
occurring in 18 samples and 30 features were imputed 
using the median of each feature (step V) under the 
MAR assumption.

Classifier development
The resulting data matrix [296 features  ×  25 subjects] 
was further statistically analyzed in a supervised setting 
(figure 1) in an effort to identify signals reflecting 
exhaled compounds that may be valuable in identifying 
BC, based on the mass spectrometric fingerprints. Class 
comparison revealed 35 features in breath that differed 
significantly between cases and controls (figure 3), 24 
(69%) of which were present at higher levels in the 
exhaled breath from cases. This subset included the 
features with m/z 148 and 128, showing FDR-adjusted 
p-values of 0.0259 and 0.0770, respectively (nominal  
p-values: 9e-05 and 5e-04). In class prediction analysis, 
we first attempted to identify the most informative 
signals using the bootstrap feature selection strategy, 
based on 3 different classification algorithms: PAM, 
RT and L1 SVM Bootstrap results are represented 
by an egg-shaped plot (figure 4(A)) that provides an 
immediate overview of the feature relevance in terms 
of bootstrap occurrence (node size) and co-occurrence 
(edge thickness); the latter can suggest possible 
structural and/or biological links among molecules. 
The signal detected at m/z 106, selected in 346 of 
1000 bootstrap samples was the most discriminative, 
followed in decreasing order by signals at m/z 126 
and 147 (345 of 1000), 78 (331 of 1000), 148 and 52 
(322 of 1000) and 128 (259 of 1000). Figure 4(B) 
shows the frequency of bootstrap occurrences and 
co-occurrences of the features represented in the 
egg-shaped plots. The most frequent co-occurrences 
involved feature corresponding to m/z 126 and were 
jointly selected with feature 147 (202 of 1000 bootstrap 
samples), 148 (190 of 1000), 128 (185 of 1000) and 315 

(160 of 1000); note that signal at m/z 148 co-occurred 
with its isotope at m/z 147 (161 of 1000). Signals 
selected in at least one bootstrap sample were used in 
a multivariable context to develop a cross-validated 
linear SVM classifier. The ‘ROC space’ in figure 5(A) 
shows the results of the different SVM models in terms 
of cross-validated classification performance. The 
model with sensitivity  =  0.93, specificity  =  0.91 and 
Youden index  =  0.84, including eight features (m/z 
106, 126, 147, 78, 148, 52, 128, 315) was used to develop 
the classifier, characterized by the best performance in 
discriminating exhaled breath from BC patients and 
by the smallest number of features among the models 
with equal discriminating performance. Figure 5(B) 
shows a heat map representing the abundance of the 
8 features in each sample. Overall, supervised analysis 
indicated that the mass regions, 147–148, 126–128, 106 
and 315 included signals originating from molecules 
possibly chemically and/or functionally related and 
differentially over-detected in exhaled breath of BC 
patients.

The bootstrap feature selection was also per-
formed by applying the elastic SCAD SVM, in 
conjunction with PAM and RF, obtaining simi-
lar results as those achieved using L1 SVM (sup-
plementary file S5). Both feature selection  
algorithms clearly tends to pick isotopic features (e.g. 
m/z 147–148), suggesting that they efficiently selects 
interconnected signals.

Figure 3. Class comparison analysis. Boxplots showing 
the distribution of the ion abundance values of the 35 
significantly differentially detected features in cases (dark 
grey) versus controls (light grey), sorted in ascending order 
according to the Wilcoxon test p-value.
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Finally, to ensure that the discriminant features 
were not selected merely by chance, we calculated how 
often the eight features of the final classifier were the 
top three in the bootstrap selection classifications 
obtained from 1000 permuted data sets, in which a ran-
dom association between features and classes (cases 
and controls) was generated. None of the eight features 
was selected as top three in 848 permuted data sets, one 
of the eight features was top three in 141 selections, 
and a couple of features appeared jointly in 11 selec-
tions. The most predictive feature, i.e. 106, appeared 
2% of the times as top three; the corresponding  
percentages for the other features were: 0.4% for 126 
and 147, 5.9% for 78, 0.1% for 148, 7.2% for 52, 0.2% 

for 128 and 0.1% for 315. This indicates that the eight  
BC–related features were randomly bootstrap-selected 
in permuted datasets, supporting the robustness of the 
classifier.

Discussion

The recent dramatic improvement of analytical 
platforms for metabolic profiling has provided 
evidence encouraging the use of metabolic biomarkers 
as a valuable tool for cancer detection [1]. In the case 
of biomarker discovery in exhaled breath, sample 
handling, chemical analysis and subsequent data 
mining await standardization after further exploration 

Figure 4. Bootstrap feature selection. (A) Egg-shaped plot representing bootstrap results and showing features (m/z) with at least 
150 co-occurrences. (B) Frequency of occurrences (in brackets) and co-occurrences (next to edge) of the features represented in 
the egg-shaped plot. Node size and edge thickness are proportional to the frequency of bootstrap occurrences and co-occurrences, 
respectively.

Figure 5. Classifier development. The ‘ROC space’ plot represents the LOOCV classification performance of different linear SVM 
models for class prediction in terms of false-positive rate (FPR; 1-specificity) and true-positive rate (TPR; sensitivity). B) Heatmap 
showing color-coded ion abundance values of the 8 features of the final classifier. Green and red represent under- and over-detected 
signals in cases, respectively.
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of novel and suitable approaches. In particular, there is 
a well-identified need for defining data pre-processing 
techniques and supervised methods in breath analysis, 
as recently highlighted by Smolinska and coworkers 
[21]. Here, we explored the clinical usefulness of a 
combination of a promising breath analytical tools, i.e. 
SESI–MS, and a statistical and bioinformatic tool for 
data pre-processing and classifier development. Using 
this novel strategy, we identified a BC-related signature 
able to classify patient and control breathprints with 
sensitivity and specificity above 0.9.

Because all ‘omics’ studies are generally affected by 
several sources of variability, including inherent bio-
logical variation as well as data noise due to intrinsic 
technical variability, there is a need for efficient govern-
ance of non-biological variability in the pre-analytical 
and analytical phases to minimize data misinterpre-
tation. One of the main advantages of the analytical 
platform used herein resides in the rapid screening 
of breath metabolites made possible by SESI–MS, 
resulting in rich MS fingerprints without any sample 
preparation. Indeed, the complete SESI–MS analysis 
of two replicate samples collected in appropriate bags 
was typically accomplished in less than one minute. 
The accuracy of replicate profiles and high reciprocal 
homogeneity among all samples suggest the robustness 
of SESI–MS measurements. In addition, data produced 
using SESI–MS analysis were high-dimensional data of 
quality comparable to gene expression analysis output, 
prompting us to use methods originally developed for 
gene expression data in analyzing SESI–MS breath-
prints. Together, the properties of SESI–MS suggest 
its particular suitability for large-scale clinical breath 
analyses.

In the post-analytical step, we used data pre-pro-
cessing techniques to correct for residual systematic 
technical or non-biological experimental variation. The 
ComBat correction, in particular, was used to adjust for 
batch effects arising from the breath sample collection 
procedure and analysis performed on different days.

With the aim of developing a VOC signature that 
accurately discriminates between cases and controls, 
we used a two-step procedure involving current and 
new approaches for data analysis and representation 
that promises to ensure generalization of results and 
provide insights into feature interconnections. Boot-
strap feature selection raised a robust and specific fea-
ture ranking, as supported by the random selection of 
the BC-related features when the bootstrap procedure 
was applied to 1000 permuted datasets. The bootstrap 
feature selection was based on conceptually different 
machine-learning algorithms: PAM, RF and two alter-
native SVM algorithms, i.e. L1 elastic SCAD. The above 
algorithms were chosen because they can overcome the 
‘curse of dimensionality’ typical of ‘omics’ data, i.e. 
feature numbers much larger than subject numbers, 
and are representative of methodological categories 
using different decision rules for classification. PAM 
provides simplicity and interpretability, while RF and 

SVMs algorithms are suitable for complex classifica-
tion patterns. RF is nonparametric, which is desirable 
especially when outliers occur, and also deals with data 
overfitting; however, RF only outputs importance 
measures, the interpretation of which is controversial 
in the presence of correlated features [42]. The recent 
elastic SCAD SVM [37] has been proposed as an effec-
tive method for considering the correlation structures 
in the input data (grouping effect) and applied to 
develop a miRNA-based classifier able to discriminate 
hemolyzed and not hemolyzed plasma samples [43]. 
The L1 SVM showed high prediction accuracy for mod-
els in which the sparsity assumption (small number of 
nonzero parameters) is tenable [36], as in the case of 
‘omics’ data characterized by few predictive variables. 
In our application the two alternative SVM algorithms 
generated comparable bootstrap feature rankings, but 
the computation time of bootstrap process was dra-
matically reduced using L1 SVM jointed to PAM and 
RT, addressing this setting of our pipeline to biomarker 
discovery in large cohort of patients.

We summarized the bootstrap feature selection in 
an egg-shaped plot, allowing immediate visualization 
of the most discriminative features and their co-occur-
rences and highlighting the possible interconnections 
underlying the structural/biological framework usually 
hidden in massive data. Lastly, we derived a molecular 
signature associated with cancer patient breath sam-
ples using a linear SVM model based on the ‘rule’ of 
best classification performance, as indicated by the 
highest Youden index, and smallest number of features 
included in the model. Linear SVM models require the 
tuning of only two parameters but, like all SVM mod-
els, do not allow probability estimation or ROC curve 
generation; nevertheless, a binary classifier can be eas-
ily derived from SVM predictions, since they cluster 
around two different values.

While conclusions from our study are limited by 
our small sample size, our statistical and bioinformatic 
strategy for breath analysis has already been adapted to 
other ‘omics’ data, including microRNA data [43] and 
a complex LC-MS dataset from high-resolution Orbit-
rap analysis of plasma samples [43]. This indicates that 
our procedure is flexible enough to adapt the algorithm 
to different questions, data structure or knowledge 
domain.

The present study designed a general strategy effec-
tive in discovering potential volatile biomarkers to be 
developed for early diagnosis of cancer. The classifi-
cation performance of our volatile signature awaits 
confirmation in larger cohorts of BC patients and non-
cancer control subjects. Another important aspect is the 
identification of the most discriminative exhaled com-
pounds to gain insights into the disease. This task can 
be undertaken by combining SESI with mass spectrom-
eters of high resolution and fragmentation capabilities, 
thereby enabling unambiguous identification [44, 45].

The translation of the biomarker discovery phase 
to the clinical practice, beyond the validation phase, 
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will still require a significant development of the ana-
lytical and bioinformatics procedures, tailored on the 
definitive classifier, to finally deliver a user-friendly tool 
for the rapid, simple and precise detection of cancer-
related signals by breath analysis.

Conclusion

Overall, our study supports the value of SESI–MS as 
an analytical technique for clinical studies, since it 
allows rapid collection of rich metabolic breathprints, 
and underscores the importance of sample quality 
assessment and quality control of raw data from 
breath analysis using a robust data pre-processing 
techniques to address unbiased pattern discovery. Our 
identification of a potential cancer-related volatile 
signature that identifies BC patients based on their 
exhaled metabolic breathprint provides the foundation 
and rationale for further analyses aimed at developing a 
noninvasive diagnostic tool for prediction of BC.
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