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Bacterial pneumonia is one of the leading causes of disease-related
morbidity and mortality in the world, in part because the diagnostic
tools for pneumonia are slow and ineffective. To improve the diag-
nosis success rates and treatment outcomes for bacterial lung infec-
tions, we are exploring the use of secondary electrospray ionization-
mass spectrometry (SESI-MS) breath analysis as a rapid, noninvasive
method for determining the etiology of lung infections in situ. Using
a murine lung infection model, we demonstrate that SESI-MS breath-
prints can be used to distinguish mice that are infected with one of
seven lung pathogens: Haemophilus influenzae, Klebsiella pneu-
moniae, Legionella pneumophila, Moraxella catarrhalis, Pseudomo-
nas aeruginosa, Staphylococcus aureus, and Streptococcus pneu-
moniae, representing the primary causes of bacterial pneumonia
worldwide. After applying principal components analysis, we ob-
served that with the first three principal components (primarily com-
prised of data from 14 peaks), all infections were separable via
SESI-MS breathprinting (P � 0.0001). Therefore, we have shown the
potential of this SESI-MS approach for rapidly detecting and identi-
fying acute bacterial lung infections in situ via breath analysis.
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LOWER RESPIRATORY INFECTIONS, including both community and
hospital acquired infections (HAIs), are the leading burden of
disease in the world, and the third leading cause of mortality
(29). In the United States, ventilator-associated pneumonia is
responsible for �15% of all HAIs, and 36% of HAI-related
deaths (22), at an estimated annual cost of $0.78–1.50 billion
in this country alone (41). The high morbidity and mortality of
pneumonia is due in part to the lack of effective diagnostics.
The typical culture-based methods for identifying pneumonia
etiologies are slow, requiring days for pathogen identification,
with a success rate at �20% (16). Even with the most sophis-
ticated and thorough molecular-based analyses at in-patient
care facilities, nearly half of pneumonia etiologies cannot be
identified (14, 16, 49). Treatment choices, such as the admin-
istration of antibiotics, should be based on the pathogen caus-
ing the pneumonia, but until more accurate and faster diagnos-
tics are developed, treatment decisions will continue to be
partly speculative (2).

Molecular diagnostics (e.g., genomic and protein-based
methods) are vast improvements over traditional culture-based
methods; however, these protocols still rely on recovering
pathogen material from the infection site (25). This presents a
significant obstacle for diagnosing lower respiratory infections,
particularly in young children, because they do not reliably

produce sputum for clinical analysis (10, 40). Therefore, rapid,
noninvasive methods for determining the etiology of lung
infections in situ could significantly improve diagnosis success
rates and treatment outcomes for lower respiratory infections.
Breath-based diagnostics eliminate the need for sputum pro-
duction and are under development. For instance, electronic
nose sensors have been used to monitor the expired breath
gases of ventilated patients and can detect the presence of
pneumonia and respiratory tract infections (17, 18). In addi-
tion, others have demonstrated that breath may be used to
diagnose the cause of lung infections because Pseudomonas
aeruginosa, Mycobacterium tuberculosis, and Aspergillus fu-
migates infections can be differentiated from uninfected con-
trols using breath analyses (8, 15, 31, 32, 37, 40, 43). However,
all of these studies have focused on the presence vs. absence of
a single pathogen, or in the case of electronic nose sensors, on
the presence vs. absence of disease without etiological data.

The ultimate goal in developing a new diagnostic tool is to
identify unknown causes of disease, and diagnosing the etiol-
ogies of lung infections directly from breath will require a
robust and unique breathprint for each infectious species. We
have previously explored the utility of secondary electrospray
ionization-mass spectrometry (SESI-MS) for differentiating
two common opportunistic lung pathogens in situ in a murine
infection model (51). SESI-MS is a technique that can rapidly
characterize volatile mixtures, separating the components by
their mass-to-charge (m/z) ratio, yielding a mass spectral fin-
gerprint of the mixtures (3, 26). We have found that the
SESI-MS fingerprints of breath, also known as breathprints, of
mice infected with Staphylococcus aureus and P. aeruginosa are
unique and reproducible, and that the breath can be used to
differentiate strains of P. aeruginosa in situ (51). In the experi-
ments described herein, we aim to further prove the utility of
SESI-MS breathprints for diagnosis by analyzing the breath of
mice with lung infections caused by one of seven different
bacterial lung pathogens: Haemophilus influenzae, Klebsiella
pneumoniae, Legionella pneumophila, Moraxella catarrhalis,
P. aeruginosa, S. aureus, and Streptococcus pneumoniae, rep-
resenting the primary causes of bacterial pneumonia worldwide
(14, 20, 34, 36, 49). We observe that in addition to markers that
may be used to distinguish infected lungs from healthy con-
trols, the SESI-MS breathprints from all seven lung infections
are unique, moving the concept of breath-based diagnostics
another step closer to practical application.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The strains used in this
study were H. influenzae ATCC 51907, P. aeruginosa PAO1-UW, S.
aureus RN450 (courtesy of Prof. G. L. Archer, Virginia Common-
wealth University, Richmond, VA), L. pneumophila ATCC 33152, S.
pneumoniae ATCC 6301, M. catarrhalis ATCC 43628, and K. pneu-
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moniae ATCC 13883. Before the bacteria were inoculated into the
mice airways, strains were incubated aerobically in tryptic soy broth
(16 h, 37°C; final cell counts �109 CFU/ml). After breath collection,
the lungs were harvested and homogenized in 1 ml PBS, and lung
bacterial cell counts were obtained by plating.

Mice and microbial airway exposure protocols. Six- to 8-wk-old
male C57BL/6J mice were purchased from The Jackson Laboratories
(Bar Harbor, ME). The protocols for animal infection and respiratory
physiology measurements were approved by the Institutional Animal
Care and Use Committee, in accordance with Association for Assess-
ment and Accreditation of Laboratory Animal Care guidelines. All
mice were housed in the Association for Assessment and Accredita-
tion of Laboratory Animal Care–accredited animal facility at the
University of Vermont (Burlington, VT). Overnight cultures of bac-
teria were measured for optical density, centrifuged at 13,000 g for 1
min, washed twice with PBS, and resuspended in 40 �l PBS to give
the desired concentration of bacteria (listed in Table 1). Mice were
briefly anesthetized (isoflurane by inhalation) and infected by oropha-
ryngeal aspiration as described previously (1, 48). Additional mice
were exposed to 40 �l PBS as a negative control. Six mice per group
were exposed and tests were conducted over several days to ensure
data reproducibility.

Mice ventilation and breath sample collection. At 3 h, 24 h, or 48 h
post infection (Table 1), the mice were anesthetized with pentobarbital
and their tracheas were cannulated. The mice were placed on the
ventilator and paralyzed with intraperitoneal pancuronium bromide
(0.5 mg/kg), and an electrocardiogram was used to monitor heart rate
to ensure proper anesthesia. Breath coming out of the ventilator was
collected in 5-liter Tedlar bags (SKC, Eighty Four, PA) at 180
breaths/min with a positive end-expiratory pressure of 3 cmH2O for
40–60 min.

Bronchoalveolar lavage fluid: hematology and lung damage assays.
After breath collection, 1 ml of cold PBS with 5% fetal bovine serum

(FBS) was instilled into the lungs and the bronchoalveolar lavage fluid
(BALF) was collected through the cannula installed previously for
ventilation. BALF cells were pelleted and immediately resuspended in
the same solution (PBS � 5% FBS). Total cells were counted using
an ADVIA cell counter (Bayer, Terrytown, NY). Then, BALF cells
were fixed onto glass slides (2 � 104 cells/slide), stained with Hema-3
(Biochemical Sciences, Swedesboro, NJ), and the leukocytes were
counted (300/slide) and categorized as macrophages, eosinophils,
polymorphonuclear neutrophils (PMNs), or lymphocytes on the basis
of characteristic morphology and staining.

In vivo lung tissue damage was determined by measuring lactose
dehydrogenase activity (LDH) in BALF samples using the CytoTox
96 NonRadioactive Cytotoxicity Assay (Promega, Madison, WI),
according to the manufacturer’s instructions.

Secondary electrospray ionization–mass spectrometry (SESI-MS)
and breath sampling. SESI-MS breath analysis was performed in
positive-ion mode within 1 h of breath collection, as previously
described (27, 50) on a modified SCIEX API 3000 mass spectrometer
(Concord, ON, Canada; for a detailed schematic of the SESI-MS
system, see Ref. 3). The breath sample was introduced into the
reaction chamber for 30 s at a flow rate of 3 liters/min, and supple-
mented with 2 liters/min CO2 (99.99%) at ambient temperature.
Formic acid [0.1% (v/v)] was used as the electrospray solution,
delivered at a flow rate of 5 nl/s through a nonconductive silica
capillary (40 �m i.d.). The operation voltage was �3.5 kV, and the
declustering, focusing, and entrance potentials for the mass spectrom-
eter were set to 5 V, 350 V, and 2 V, respectively. Spectra were
collected for 30 s as an accumulation of 10 scans. The system was
flushed with CO2 between samples until the spectrum returned to
background levels.

Data analysis and statistics. Analyst 1.4.2 software (Applied Bio-
systems, Foster City, CA) was used for spectra collection and raw data
processing. The mass spectra shown are the average spectra of all

Fig. 1. Total number of polymorphonuclear neutro-
phils (PMNs) in bronchoalveolar lavage fluid (BALF).
Statistical significance determined by t-test (3-h infec-
tion) or one-way ANOVA (24- and 48-h infections);
***P � 0.0001, **P � 0.001 compared with the
corresponding PBS-treated mice (control) as per Table
1. Values represent mean � SE of all replicates in each
group.

Table 1. Infection doses and end-point bacterial cell counts, six mice per group were tested in this study

Bacteria Infection dose (CFU/lung) Infection time (h) Lung harvest bacterial counts (CFU/lung) SE

Moraxella catarrhalis 1.0 � 108 3 2.4 � 106 7.0 � 104

Klebsiella pneumoniae 1.0 � 107 24 7.8 � 104 2.2 � 103

Pseudomonas aeruginosa 1.0 � 107 24 3.5 � 105 5.6 � 103

Staphylococcus aureus 1.0 � 108 24 1.6 � 106 1.1 � 105

Streptococcus pneumoniae 5.0 � 106 24 2.0 � 105 1.1 � 104

Haemophilus influenzae 1.0 � 108 48 5.4 � 105 4.6 � 103

Legionella pneumophila 2.5 � 106 48 1.7 � 104 2.0 � 102
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sample replicates in each group. Full scan spectra are blank-subtracted
(the blank spectrum is humidified room air collected using the same
procedure as for mice breath) and normalized to the peak of greatest
intensity. MS/MS fragmentation spectra of some high-abundance
peaks in the breath sample were also collected and built into a small
database using NIST MS search V 2.0 software (National Institute of
Standards and Technology, Gaithersburg, MD). The spectral pattern
comparison algorithms of the NIST V 2.0 software were used to
assess the similarities between the fragmentation patterns, as previ-
ously described (9, 28, 42). For this study, peaks from different breath
samples that have fragmentation pattern match scores of 700 or
greater (�70% match) are considered identical peaks (i.e., identical
variables) for subsequent principal component analysis, described
below.

The statistical significance of total leukocytes, PMN counts
from BALF, and LDH activity between infection and control
groups were determined by a t-test (3-h infection) or one-way
ANOVA (24- and 48-h infections) using JMP version 10 (SAS
Institute, Cary, NC). To meet the assumption of normal distribu-
tion for the ANOVA and t-test, total leukocytes and PMN counts
were log-transformed before the analysis. SAS version 9.2 (SAS
Institute) and JMP version 10 were used to conduct spectral
principal component analysis (PCA) on absolute intensity spectra,
and to determine the statistical significance of observed PCA score
differences. Peaks between 20 and 200 m/z and signal-to-noise
ratios greater than 2 were used as variables for PCA, while all
experimental replicates were used as observations.

RESULTS

We employed a murine lung infection model using seven
different bacteria, establishing a 3-h infection with M. ca-
tarrhalis; 24-h infections with K. pneumoniae, P. aeruginosa,
S. aureus, and S. pneumoniae; and 48-h infections with H.
influenzae and L. pneumophila (Table 1). Bacterial cell counts
from lung homogenates indicate that bacteria are present in the
lungs at the time of breath collection. The data also show that
there is a clearing of bacteria from the initial lung inoculum, as
is expected for these doses and infection times (4, 11, 13, 19,
24). To confirm the establishment of infection, the BALF
leukocyte cell count, PMN total count, and LDH activity were
measured. We observed that the BALF leukocytes were sig-
nificantly increased in the infection groups vs. controls in most
cases (data not shown), which is consistent with previous
mouse infection models for each pathogen in this study (5, 21,
23, 38, 39, 47, 48). PMN infiltration is one of the most
important steps during the innate immune response against
bacterial infections (35), and we observed that the total PMN
count was significantly different from that of the control groups
in all instances (Fig. 1), with P � 0.001 (t-test or one-way
ANOVA). Further evidence of infection can be ascertained by
the presence of lung damage, measured by extracellular LDH
activity in BALF (45). We report here that LDH levels were
higher in the BALF of all infected mice compared with
uninfected controls (P � 0.05), except for S. pneumoniae.
Taken together, the leukocyte cell counts, total PMN counts,
and LDH activity indicate that infections were established for
all bacteria.

The utility of SESI-MS breathprinting relies on high inter-
group differences between breathprints from different infec-
tions, coupled with high intragroup reproducibility. We calcu-
lated the average Spearman correlation coefficients between
biological replicate breathprints within a single group to assess
the reproducibility of SESI-MS. For six out of seven infection

groups and all three PBS control groups, the reproducibility of
the breathprints is high, ranging from 0.81 to 0.94 (standard
deviation �0.09). The exception is M. catarrhalis (0.64 �
0.14), possibly because of its quick clearance rate (typically
less than 4 h) coupled with the short time scale (3 h) between
infecting inoculation and breath measurement (4, 12).

The SESI-MS breathprints for infected mice show unique
patterns for each bacterium (Fig. 2). To compare and contrast
the details of the breathprint patterns from the seven bacterial
species involved in this study, we list the peaks from each
breathprint in Table 2. Comparing the presence and absence of
peaks across these seven infection groups (Table 2) and the
uninfected controls (data not shown), we find that M. catarrha-
lis has two unique peaks (m/z � 54 and 92), K. pneumoniae has
two unique peaks (m/z � 145 and 183), S. aureus has one
(m/z � 81), and S. pneumoniae has three (m/z � 46, 59, and
74), contributing distinguishing markers in the breathprints for
these infections. Beyond the unique peaks for individual spe-
cies, the intensities of the common peaks in the spectra also
carry information, as observed by the patterns generated in
Table 2. For example, peak m/z � 61 can be measured from all
seven bacterial infections, with intensities varying by an order
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Fig. 2. SESI-MS breathprints from mice with H. influenzae, K. pneumoniae, L.
pneumophila, M. catarrhalis, P. aeruginosa, S. aureus, or S. pneumoniae lung
infections. The spectra shown here are representative spectra (average of six
replicates from each group).
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of magnitude (106 to 107 cps), whereas peaks m/z � 41 and 119
vary by two orders of magnitude. The patterns of peak inten-
sities across the breathprint mass range also confer unique
information for bacterial identification.

To determine the statistical difference between groups, we
performed principal components analysis with the absolute
intensities of the breathprint peaks (Fig. 3). Using the first three
principal components (PC), accounting for 44.1% of the total
variance, all infections were separable via their SESI-MS
breathprints (P � 0.0001). In addition, all of the infection
breathprints are separated from uninfected controls using the
first three PCs. Examining the PC loadings for each individual
peak, where the closer the loading value is to 1, the higher the
peak-to-PC influence, we found that 10 peaks have strong
contributions (absolute PC loadings �0.7) to PC1, four peaks
have strong contribution to PC2 (Table 2).

DISCUSSION

MS/MS fragmentation of breath volatiles, which can be used
for compound identification and peak verification, is a capability
that is afforded by SESI-MS, unlike similar mass spectrometry
methods such as selected ion flow tube–mass spectrometry (SIFT-
MS) and proton transfer reaction–mass spectrometry (PTR-MS)
(6, 7, 46). We conducted more than 200 MS/MS product ion
scans to obtain peak fragmentation data on the most abundant
peaks from each breath sample, then we used NIST 08 MS
software to compare the fragmentation patterns between bio-
logical replicates and between bacterial groups. We confirmed
that all peaks with the same m/z have similar fragmentation
patterns (match score �700), and therefore should be recog-
nized as the same compound or group of compounds. Com-
paring our SESI-MS data to previously published breath anal-
yses, seven peaks listed in Table 2 (peaks m/z � 101, 103, 107,

Table 2. Absolute intensities of breathprint peaks from mice infected with one of seven lung pathogens

Peaks MC KP SA PA SP HI LP Peaks MC KP SA PA SP HI LP

27† �� �� 108 ��� ��
29 �� ��� �� ��� ��� ��� 109 �� ��� ��� �� ��
33 �� �� � 110 � ��
37* ���� ��� ��� ��� ���� ��� 111 �� ��
39 � �� 112 � �� ���
41* �� ��� ��� ���� ��� �� ���� 113* ��� ��� ��� ��� ���
42* �� �� 114 ��� ��� ���
43* ���� ���� ���� 119† ��� ��� ��� ���� ���� ��� ���
44* ��� ��� ��� 120 �� ��� ��� ���
46 ���� 121 ��� ���� ���
47 ���� ���� ��� ���� ����� ���� ���� 123 ��
48 �� �� ��� ��� �� 125 �� �� ��
54 �� 127* �� ��� ��� ��� �� ��� ���
59 ���� 129 ��
60 ���� ��� ���� ����� ��� 133 �� ���
61 ���� ����� ����� ���� ����� ����� ����� 135 ��� ����
62 �� ��� ��� ��� ���� ��� ��� 136 �� �� ��
63 ��� ��� ��� ��� ��� ��� 139 ��� ��� �� ��� ��
65 � �� ���� 141 ��
69 ��� ��� ��� ��� ��� �� 143 ��� �� ���
70 �� �� ��� �� ��� 145 ���
71 ��� �� ��� �� 147 � ��
74 ���� 149 �� ��� ��� ��� ��� ��� ��
75† ��� ���� ���� ��� ���� ��� ��� 150 � �� ��
76 �� ��� ��� � �� 151 ��
77 �� �� �� �� ��� �� 152 �
79 ��� 153 ��
81 �� 155 �� �� �� �� ��
83 ��� ��� �� ��� ��� 157 �� ��
84 �� � �� 159 ��� �� ��
85 � ��� ��� ��� ��� �� 161 ��
88* ����� ����� ���� ���� ����� ���� 163 ��� ���
89* ����� 165 ��
90 ���� 167 �� �� ��
91 �� ��� ��� ��� ��� ��� ��� 170 ��� �� ��� ��� ��
92 �� 175 ����
93† �� ��� ��� ��� ���� ��� ��� 176 ���
95 ��� 177 �� �� �� ��
97 �� ��� 183 ��
99* �� ��� ��� �� ��� �� 185 �� �� ��

100 �� �� 187 ��� �� ��� ��� ��� ���
101 ���� ���� ���� ���� ���� ��� 191 �� ��
102 ��� ��� ���� 195 �� �� ��
103 ��� ��� �� ��� �� 197 �� �� ��� ��
107 ��� ��� �� ��� ��� 199 ��� ���

MC, M. catarrhalis; KP, K. pneumoniae; SA, S. aureus; PA, P. aeruginosa; SP, S. pneumoniae; HI, H. influenzae; LP, L. pneumophila. Order of peak intensity
(cps): �103; ��104; ���105; ����106; �����107. Peaks that have loadings with an absolute value �0.7 on principal component 1 (*) and 2 (†).
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121, 129, 143, and 157), which are observed in the breath of
the infected mice in our study, could be tentatively assigned as
compounds that have been identified by Peters and colleagues
(30, 44), whereas standards tests will be needed before these
identifications can be confirmed. The studies by Peters et al.
examine inflammation markers (i.e., no infection involved),
and therefore, these seven peaks in the breath of infected mice
may be markers that are host-derived, rather than pathogen
metabolites. We hypothesize that portions of the distinguishing
patterns in the SESI-MS breathprints for each pathogen are
also host-derived, with the immune system mounting bacteri-
um-specific responses to some infections. We are presently
conducting experiments to parse apart the bacterium and host
contributions to SESI-MS breathprints.

Transitioning SESI-MS breathprinting from a mouse model
to diagnosing human lung infections is an admittedly large step
that we aim to take in the near future. The biggest hurdle will
be accommodating the high interindividual variability that
exists in the human breath volatilome (33). In developing
breath-based diagnostics, it will be necessary to address the
influences that genetic, environmental, and behavioral factors
have over breath volatiles, which will require many more than
six subjects per infection group as was used in these mouse
experiments. However, the breathprints of the seven different
infections were observed to be highly unique and reproducible,
even with the small group size used in this study (six mice per
group; P � 0.0001), demonstrating the incredible amount of
information contained in each breathprint and suggesting that it
will be possible to overcome the variability we expect to
encounter in human breathprints. In addition, it has been shown
that highly specific and sensitive breath tests for human lung
infections can be developed when multiple breath volatiles are
used for diagnosis (37). Because SESI-MS breathprints mea-
sure the relative abundances of many breath volatiles simulta-
neously, we feel that it holds promise for diagnosing human
bacterial lung infections in the future.

To the best of our knowledge, this is the first study to
compare and contrast the breath volatile biomarkers from lung
infections caused by H. influenzae, K. pneumoniae, L. pneu-

mophila, M. catarrhalis, P. aeruginosa, S. aureus, and S.
pneumoniae. We have demonstrated that SESI-MS breathprint-
ing can be used to distinguish all seven bacterial infections in
situ (P � 0.0001), providing evidence that SESI-MS can be a
powerful tool for the detection and identification of bacterial
lung infections using breath analysis.
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