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Abstract

The metabolic phenotype varies widely due to external factors such as diet and gut microbiome composition, among
others. Despite these temporal fluctuations, urine metabolite profiling studies have suggested that there are highly
individual phenotypes that persist over extended periods of time. This hypothesis was tested by analyzing the exhaled
breath of a group of subjects during nine days by mass spectrometry. Consistent with previous metabolomic studies based
on urine, we conclude that individual signatures of breath composition exist. The confirmation of the existence of stable
and specific breathprints may contribute to strengthen the inclusion of breath as a biofluid of choice in metabolomic
studies. In addition, the fact that the method is rapid and totally non-invasive, yet individualized profiles can be tracked,
makes it an appealing approach.
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Introduction

Personalized medicine aims to tailor medical treatment to the

individual characteristics of each patient [1]. With the advent of

high-throughput genome sequencing techniques, the concept of

personalized health care is about to become a reality in the clinic

[2]. However, the genome alone cannot account for factors like life

style, interplay with gut microbiome [3] or circadian cycle [4–6].

For this reason, mapping of the metabolome and relating it to sub-

populations or even individuals will be critical to fully achieve the

concept of personalized healthcare [7]. However, precisely

because the metabolome accounts for external factors, it is subject

to intra-individual variations that need to be characterized. To

address this issue, recent studies have investigated the question

whether individual metabolic phenotypes are stable during

extended periods of time [8,9].

As other biofluids, breath contains relevant biochemical

information, since it carries a large fraction of the most volatile

metabolites [10]. Breath analysis is completely non-invasive, and

therefore an attractive approach, which in principle is also suitable

to monitor an individual’s health status over extended periods of

time. However, breath analysis has not yet been routinely used to

complement the analysis of other biofluids in order to contribute to

an individualized healthcare. This situation may start to be

reversed by the assessment of the intra-individual variations of the

composition of human breath; and ultimately examining whether

or not individualized breathprints persist over the time. This has

been the main goal of the present study.

Materials and Methods

Subjects
Eleven subjects [6 males/5 females; age 29.864.6 years (mean

6 SD)] were included in this study. The subjects were ETH staff

with a heterogeneous ethnic background (see Supplementary table

S1 for details). During the period examined, the subjects did not

change their routine life style. They came to our facilities during

nine working days and their breath was analyzed during four time

slots: 8 AM–11 AM; 11 AM–1 PM; 1 PM–3 PM and 3 PM–

6 PM). Note that not all of them could attend every measurement;

therefore, the total number of samples collected per subject ranged

between 10 and 26 (average of 18). The order in which the

subjects’ breath was analyzed was randomized. To minimize

confounding effects, the participants refrained from eating,

drinking and brushing their teeth at least 30 minutes prior to

the measurements. None of the subjects was a smoker and their

routine dietary habits were kept constant. The Research Ethics

Committee of ETH Zurich approved the study (EK 2012-N-25),

and all subjects gave written informed consent to participate.

Mass spectrometric analyses
The participants were asked to breathe through a heated Teflon

tube (3 mm i.d.) connected to the curtain gas port of a quadrupole

time-of-flight mass spectrometer (Q-TOF Ultima, Waters Inc.).

The sampling tube was surrounded with a heating tape at 90 uC to

prevent water condensation and to minimize losses onto the walls

of exhaled compounds. Each time, a subject provided a full

exhalation, while keeping the pressure through the sampling line at

20 mbar (typically +/2 2mbar;monitored by a digital manometer;

this translated to a flow rate of 3.8 L/min). This process was
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performed in triplicate. The exhaled breath encountered an

electrospray plume, where some compounds get ionized and

subsequently are mass analyzed. This technique has been referred

to as secondary electrospray ionization (SESI) [11]. The spray was

formed with a home built source by infusing water (0.2% formic

acid) at ,100 nL/min through a PicoTip emitter (20 i.d; 360 o.d.)

held at 2 kV (,400 nA) above the sampling orifice. The

electrospray tip was located 6 mm from the sampling cone and

1 mm off the symmetry axis.

Data analysis
The three replicate mass spectra of each sample were averaged

with MassLynx (Waters) and exported as txt files (m/z-intensity

pairs). In this process, only the last few seconds (typically around

6 sec.) of each exhalation was considered, excluding from the

analysis the first part of the exhalation which reflects mostly the

dead volume in the upper respiratory tract. Further analysis was

conducted with Matlab (R2011b, Mathworks Inc.). The original

mass spectra were interpolated to 10,000 m/z values (56–400 Da,

in steps of 0.0187 Da). The spectra were normalized by

standardizing the area under the curve to the total median. After

individually normalizing every signal, they were further scaled to

adjust the overall maximum intensity to 100. Finally a

193610,000 matrix was assembled.

First, we applied a Kruskal-Wallis test [12] to filter the most

informative features regarding donor-specificity. The condition to

retain an m/z value for further analysis was twofold: P,1023 and

in addition, at least one pair of measurements must be significantly

different upon a further multicomparison test (Bonferroni correct-

ed, 95% confidence level). These conditions were satisfied by

2,928 m/z signals. Further multivariate analysis to determine the

existence of individual breathprints was pursued by combination

of standard multivariate methods as previously described [8,9].

Essentially, the dimensionality of the 19362,928 matrix was

further reduced by principal component analysis (PCA) and

canonical analysis (CA). The PCA score sub-matrix (99.99% of

explained variance) was subjected to MANOVA, which as

performed by MATLAB computes CA, yielding 10 dimensions

(all with P,1023) maximizing the separation of the 11 subjects.

The interpretation of the resulting discriminant functions to

ascertain the contribution of the different mass spectral signals to

the separation between subjects, was performed by standardizing

the combined loading coefficients of PCA and CA as described

previously [13,14]. To visualize the contribution of the resulting 10

canonical dimensions to the discrimination of the subjects, they

were used as input to compute hierarchical clustering (Euclidean

distance).

Finally, the Kruskal-Wallis/PCA/CA model was cross-validat-

ed (train size = 182; test size = 11). The 11 test breath mass spectra

were projected onto the subspace generated by the 182 training

mass spectra and individually classified with a k-nearest neighbor

classifier (k = 1; Euclidean distance). This process was repeated 500

times, shuffling in each iteration the test and training samples

(Monte Carlo repartitions).

Figure 1. Real-time analysis allows for the rapid breathprinting of subjects. During the 1.5 hours experiment shown above, nine subjects
breathed into the mass spectrometer. The subjects’ label codes are indicated at the top of each of the three replicate measurements in the top trace.
The three traces correspond to the ion intensity as a function of time for m/z 59, 151 and 207. Each subject breathed in triplicate, which is illustrated
by the three steps of the signal above the background per subject. This snapshot already illustrates the high inter-subject breathprint variability.
doi:10.1371/journal.pone.0059909.g001

Individual Phenotypes in Exhaled Breath Analysis
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Results and Discussion

SESI-MS allows for real-time breathprinting, producing rich

mass spectrometric signatures [15–19]. This is illustrated in

Figure 1, in which three examples of m/z values found in the

breath of nine of the subjects are plotted. As noted above, not all

the subjects could regularly attend every measurement. In the

particular example shown in figure 1, subjects 4 and 7 were not

present. Each trace corresponds to an ion’s intensity as a function

of time. During the 1.5 hours of the time trace shown, nine

subjects breathed into the system (subject-label code indicated with

arrows). The signal steps appearing above the background level

result from a single exhalation, and it can be appreciated how the

three replicate measurements per subject show comparable

heights. Note that it is obvious already at this stage that each

subject shows a distinct breathprint. For example, the ion at m/z

59 (acetone, based on a previous characterization [15]), is present

in all subjects’ breath, but in highest concentrations for subjects 6

and 11. This high individual variability is consistent with previous

measurements of breath acetone [20,21]. However, figure 1

constitutes just a snapshot reflecting part of the exhaled breath

composition at a given moment (morning measurement; 8 AM–

11 AM). In the present study, we sought to assess the amplitude of

the intra-individual variations reflected in fluctuations of exhaled

breath composition over the course of several days, including

intra-day measurements (i.e. morning and afternoon).

This is illustrated in Figure 2 for the three representative ions of

figure 1. The box plots provide an overview of the intra- and inter-

subject variability during the whole period. For example, acetone

(m/z 59) seems to have a greater intra-subject variability than m/z

207. This is also consistent with previous work [20], showing that

inter- and intra-subject diurnal levels of breath acetone can be

vary widely. Similarly, large variations of ethanol and acetalde-

hyde were found in a longitudinal study over a 6-month period

[22]. We further assessed whether or not intra-subject variability

were significantly different via a multicomparison (Bonferroni

corrected). The results are summarized in the right hand side

panels of figure 2, which show the computed mean ranks (95%

confidence interval). Two means are significantly different if their

intervals are disjoint, and are not significantly different if their

intervals overlap. Thus, for example, subjects 2 and 8 show

particularly low levels of these three compounds and are

significantly different of several of the other subjects. The rest of

the subjects show overlapping values, suggesting that further

Figure 2. Temporal variability of the three compounds shown in figure 1 over the nine days of measurements for the eleven
subjects (left). The central mark of each box corresponds to the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and outliers are plotted individually (beyond +/–2.7s). The P values resulting from the
Kruskal-Wallis test are quoted on top of the box-plots. Further multicomparison tests (right) showed that, with some exceptions, in most of the cases
inter-subject variability was not significantly different (overlapping intervals).
doi:10.1371/journal.pone.0059909.g002

Individual Phenotypes in Exhaled Breath Analysis
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multivariate methods are needed to reveal the existence of highly

donor-specific breathprints.

This was done by PCA/CA analysis and the results are

illustrated in figure 3, which shows the projection of the 193

individual mass spectra onto the first 3 PCA/CA dimensions.

Clearly, each subject tends to occupy his/her own space,

suggesting that each individual bears a unique breathprint, which

is stable during at least eleven days (nine workdays + weekend).

The relative contribution of the mass spectral signals to each of the

10 PCA/CA dimensions can be visualized in the loading plots

shown in Supplementary Figure S1. The corresponding mean

signal intensities and 95% confidence intervals of the most

diagnostic signals are listed in Supplementary table S2.

A sharper separation could be obtained by accounting for the

10 canonical dimensions through hierarchical cluster analysis

(Supplementary Figure S2), whereby each of the breath mass

spectra clustered according to donor. Finally, the Kruskal-Wallis/

PCA/CA model was cross validated (n = 11 for test; n = 182 for

model). The inset of Figure 3 summarizes the classification rate

results upon 500 Monte Carlo repartitions. The reddish diagonal

indicates that most of the times the breath mass spectra presented

to the model were correctly assigned to the donor. More precisely,

the overall recognition score was 76%, and the individual correct

classification rate ranged from 62% (subject 11) to 92% (subject 8).

It is interesting to note that, in the former case only 10 samples

were available for this subject. Therefore, at best 9 breath samples

were available in the model during the k-fold cross validation. This

is in line with the learning curves found in Figure 4a of Ref. [8],

were the probability of correct classification with 5 NMR spectra

in model set was around 58% (median of the box plot), 75% for 10

spectra and reached 100% with some 30 spectra. Note also that in

this study we have included samples from different time slots.

Therefore, since diurnal variations in the composition of exhaled

breath are believed to occur [23], this may add further

heterogeneity to the ‘‘characteristic individual fingerprint’’, thus

calling for larger model datasets to cover this intra-day variability.

Overall, this data is consistent with previous work based on

urine showing that small biomolecules released into human

biofluids can be analyzed, and with support of sophisticated

statistical analysis, individual signatures (metabotypes) can be

revealed [8,9]. Moreover, we have included data collected during

different times of the day. It is known that part of the metabolome

fluctuates as a result of biological clocks like for example the

circadian cycle [4]. We found that, despite this potential source of

within day variation, the individual signatures were yet identifi-

able. These results are encouraging; however, one limitation of this

study is the lack of positive identification of most of the breath

components. For this reason, it is difficult to determine to what

extent exogenous compounds (e.g. due to exposure to chemicals in

a laboratory) may ultimately contribute to produce individualized

exhaled fingerprints. Ongoing investigations with a higher

resolving power instrument than the one used in this study are

expected to provide structural elucidation of the most significant

exhaled compounds and therefore ultimately determine to what

extent endogenous metabolites contribute to the individual

breathprints identified in this study. Despite this noted limit-

ation,,this study suggests that breath may be incorporated into

metabolomic studies as a valuable additional source of informa-

tion, complementary to the analysis of other biofluids like plasma

or urine. In addition, even though its analysis in real-time does not

provide sets of information as rich as traditional off-line

techniques, it suffices to track breathprints with individualized

precision. Given that breath analysis is simple, non-invasive and

rapid, we envisage its application as an individualized screening

Figure 3. Projection of the 193 breath mass spectra onto the first three dimensions obtained by supervised Kruskal-Wallis/PCA/CA.
Grouping according to breath donor (represented by different colors and symbols) becomes apparent. The inset displays the blind classification
results upon a cross-validation (average of 500 Monte Carlo repartitions). The overall breath-mass spectrum to breath-donor recognition score was
76%.
doi:10.1371/journal.pone.0059909.g003

Individual Phenotypes in Exhaled Breath Analysis
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tool; whereby the deviation of one’s breath signature beyond the

natural ‘‘daily noise’’, may trigger further examinations to

determine the reasons.

Conclusions

Based on real-time mass spectrometric analysis of exhaled

breath of a group of subjects during nine days (up to four

measurements per day), we conclude that: i) the intra- and inter-

subject variability for some compounds detected in breath can

vary relatively widely; ii) despite this intra-individual variations,

stable ‘‘core’’ breathprints, which are highly donor-specific could

be identified; iii) overall, this suggests that breath analysis may

contribute, together with other techniques, towards a future

individualized-oriented healthcare.

Supporting Information

Figure S1 Relative signal contributions to each of the 10 PCA/

CA dimensions found to maximize the separation of the breath-

prints of 11 subjects. Positive (negative) values indicate relatively

increased (decreased) intensities in subjects with positive values in

the corresponding dimension (i.e. reddish color in clustergram;

Figure S1) as compared to those with negative values (i.e. greenish

in clustergram; Figure S1).

(TIF)

Figure S2 Clustergram resulting from hierarchical cluster

analysis for the 10 Kruskal-Wallis/PCA/CA dimensions (rows).

The dendrogram on the top displays 11 clusters corresponding

each to one individual (color coded; M: Male; F: Female). The

heatmap provides an overview of the relative contribution of each

of the 10 dimensions to each individual cluster (red: positive

values; black: values close to zero; green: negative values). Intra-

subject distances are smaller than inter-subject ones, suggesting the

existence of individual breath phenotypes.

(TIF)

Table S1 Characteristics of this study subjects.

(DOCX)

Table S2 Mean signal intensities and 95% confidence interval

for the mean (in parentheses) for the most diagnostic ions (i.e.

higher absolute global loading coefficients). The p-values reported

for each m/z were computed according to a Kruskal-Wallis test.

(DOCX)
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