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Introduction

Exhaled breath contains valuable information about 
metabolic processes taking place within the human 
body. The development of suitable analytical tools to 
capture this information non-invasively could support 
the clinical diagnosis of various diseases in the near 
future [1–5]. Every exhalation contains hundreds of 
volatile compounds, including metabolites, inhaled 
exogenous substances and compounds produced in the 
oral cavity [6, 7]. Since Pauling discovered more than 
200 different compounds in exhaled breath using gas 
chromatography-mass spectrometry (GC-MS) in the 
1970s [8], interest in breath analysis has steadily grown. 
Over 800 compounds have been identified in exhaled 
breath of humans [9]. Apart from GC-MS, which is 
considered the workhorse in the field, several other 
techniques have evolved over the last decades to analyze 
breath, for example, electronic sensors, spectroscopic 
methods and ion mobility spectrometry [5].

Mass spectrometry-based methods provide the 
highest chemical selectivity, enabling the identification 
of breath metabolites. Real-time breath analysis is an 
advantageous approach to track physiological changes 
over short periods of time. One natural disadvantage 
accompanying real-time mass spectrometric methods 
is the lack of prior chromatographic separation. This 
compromises the identification of isobaric species, 
hence leading to a considerable loss of information 
when measuring with insufficient resolution. This is 
especially important in untargeted studies where one 
should ideally cover as many metabolites as possible.

Pioneering work from scientists at Sciex showed for 
the first time that their atmospheric pressure chemi-
cal ionization (APCI) mass spectrometer―dubbed 
TAGA (Trace Atmospheric Gas Analyzer)―had 
the potential to monitor breath metabolites in real-
time [10–13]. TAGA no longer exists, but other mass 
spectrometric techniques have emerged which enable 
real-time analysis of trace gases. The most prominent  
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Abstract
Online breath analysis is an attractive approach to track exhaled compounds without sample 
preparation. Current commercially available real-time breath analysis platforms require the 
purchase of a full mass spectrometer. Here we present an ion source compatible with virtually any 
preexisting atmospheric pressure ionization mass spectrometer that allows real-time analysis of 
breath. We illustrate the capabilities of such technological development by upgrading an orbitrap 
mass spectrometer. As a result, we detected compounds in exhaled breath between 70 and 900 Da, 
with a mass accuracy of typically  <1 ppm; resolutions between m/∆m 22 000 and 70 000 and 
fragmentation capabilities. The setup was tested in a pilot study, comparing the breath of smokers 
(n  =  9) and non-smokers (n  =  10). Exogenous compounds associated to smoking, as well as 
endogenous metabolites suggesting increased oxidative stress in smokers, were detected and in some 
cases identified unambiguously. Most of these compounds correlated significantly with smoking 
frequency and allowed accurate discrimination of smokers and non-smokers.
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techniques are proton transfer reaction-mass spec-
trometry (PTR-MS) [14] and selected ion flow tube-
mass spectrometry (SIFT-MS) [15]. In SIFT-MS and 
PTR-MS, in contrast to APCI-MS, ionization of neutral 
analytes takes place at reduced pressure. As an alterna-
tive to PTR-MS and SIFT-MS, secondary electrospray 
ioniz ation-mass spectrometry (SESI-MS) has shown 
to be suitable for the sensitive analysis of trace gases 
in real-time. As in the case of TAGA, the ionization of 
neutral vapors in SESI takes place at atmospheric pres-
sure, but instead of a corona discharge, an electrospray 
of pure solvent produces the reactant ions [16, 17]. As a 
result, one can implement this technique on any com-
mercially available atmospheric pressure ionization 
(API) mass spectrometer, without having to purchase 
an entire mass spectrometer. API-MS systems with very 
high performance are available in many laboratories, 
and for vapor analysis via SESI-MS one could thus 
take full advantage of the high performance in terms 
of sensitivity, mass resolution/mass accuracy and MS/
MS capabilities of state-of-the-art mass spectrom-
etry. However, most commercial API-MS systems are 
designed for the analysis of liquid samples. As a result, 
the implementation of SESI-MS often requires some 
modifications of the front-end hardware, compromis-
ing its widespread use. Despite this difficulty, some 
groups have used this method for vapor analysis in 
different applications [18–33]. To overcome this short-
coming, we have recently developed an optimized SESI 
add-on, which can be interfaced with virtually any com-
mercial API-MS. This add-on is based on a particularly 
efficient design, termed low-flow SESI [34], was devel-
oped to be incorporated in a trace explosive detector for 
cargo containers [35]. Similarly, a number of devices are 
available on the market to implement different ioniz-
ation strategies such as direct analysis in real time [36] 
or desorption electrospray ionization [37].

Here, we present the analytical capabilities of this 
SESI source when coupled to a high-resolution mass 
spectrometer. We interrogated the breath of smokers on 
non-smokers with the aim of illustrating the possibili-
ties of this technology for breath research. One motiv-
ation is the high interest of clinicians in tests which 
allow reliable determination of an individual’s smok-
ing status. At present, the gold-standard test involves 
the measurement of blood or urine levels of cotinine 
[38], which is the primary metabolite of nicotine [39]. 
Hence, quicker and non-invasive methods to determine 
the current smoking status are highly desirable.

Experimental section

Online mass spectrometric measurements
The measurements were performed using a 
commercial, highly efficient low-flow SESI ion source 
module (SEADM, Spain; figure 1) [34], coupled to 
an unmodified LTQ Orbitrap (Thermo Fisher). The 
covered mass range was m/z 50–1000 and the resolving 
power ranged between 70 000 (at m/z 91) and 22 000 

(at m/z 963). Measurements were done in positive ion 
mode. For chemical identification of some selected 
compounds, real-time breath MS/MS experiments 
were carried out using He as the collision gas.

The ion source featured a heated breath sampling 
Teflon tube (T  =  190 °C, length 80 cm, i.d. 1.48 mm) 
with a manometer to monitor the exhalation pressure. 
After each exhalation, the SESI chamber and sampling 
line were flushed with nitrogen stemming from the MS 
curtain-gas flow. The SESI source comprises a heated 
core (T  =  80 °C) and focusing and impactor plates 
(U1  =  2.6 kV, U2  =  1.3 kV) to guide the ions formed 
towards the MS inlet. Formic acid (Merck, 98–100%, 
p.a.) 0.1% in H2O (Merck, LiChrosolv®, for chromatog-
raphy), was used as primary electrospray solvent. The 
emitter was a PicoTip™ TaperTip™ nanospray capillary 
(50  ±  3 µm).

Subjects and sampling
The stability of the setup was initially tested by 
monitoring a healthy subject over 3 h. A total of 10 
non-smoking subjects (two females/eight males) and 
nine regularly smoking subjects (two females/seven 
males) participated in this study (anthropometric data 
included as supplementary data in table S1 (stacks.
iop.org/JBR/10/016010/mmedia)). All measurements 
were collected within 10 d. To ensure repeatability, all 
subjects exhaled six times for 20 s each, with a pressure 
of 20 mbar (monitored by an electronic manometer 
visible to the subjects). The subjects were asked to 
not eat, smoke, brush their teeth, use chewing gum or 
drink anything except water within one hour prior to 
the measurement, in order to minimize confounding 
factors. Other potential confounding variables such 
as for example exposure to second-hand smoke were 
not considered. The study was approved by the local 
ethical committee (EK 2012-N-49) and all subjects gave 
written informed consent to participate.

Data analysis

Mass spectra preprocessing
Data processing was done using home-written 
MATLAB (R2014a, Mathworks Inc.) scripts. In 
order to be readable by MATLAB, the raw files 
were converted into the mzXML file format using 
MSConvert (Proteowizard) [40]. Then, a peak list 
was generated by shape-preserving piecewise cubic 
interpolation (107 data points) and summation of all 
spectra. Afterwards, the continuum mass spectra were 
centroided by summing the intensities around each 
peak within the full width at half maximum (FWHM). 
After a baseline adjustment in the time dimension for 
all peaks, a filter was applied to extract all features that 
increased during the exhalation phases. To accomplish 
this task, 4-hydroxy-2,6-nonadienal (m/z 155.1067) 
and 4-hydroxy-2-decenal (m/z 171.1381) were used 
as references because they were found to be present 
in each exhalation of all participants. For the smoker 
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study, additional filtering was applied that eliminates 
all features, which are only present in fewer than 10 
exhalations. Subsequently, the intensities within the last 
four exhalation phases of each subject were averaged, 
yielding the raw matrix of intensities (762  ×  19, 
m/z  ×  # of subjects). To correct for small instrumental 
fluctuations between the measurements, the matrix was 
normalized to the sum of intensities within the quantile 
range of 0.1 and 0.9, making the normalization more 
robust towards outliers [41]. This procedure (shown 
schematically in figure S1 of the supplementary data)  
yielded the final matrix used for further analysis.

Univariate analysis
Once the working data matrix had been assembled, 
we sought to identify breath compounds that were 
exhaled at different concentrations between the two 
groups investigated. Initially, a two-sample t-test was 
performed. Due to the limited sample size, 100 000 
bootstrap samples were used to compute p-values for 
the 762 features. In addition, an estimate for the false 
discovery rate (FDR) was calculated using a linear step-
up procedure originally introduced by Storey [42]. 
It followed a correlation analysis between the peak 
intensities and the smoking habits (i.e. cigarettes per 
day) of the subjects.

Smoking status prediction
Subsequently, we sought to determine whether the 
mass spectral breath prints could be used to predict 
smoking/non-smoking status. The prediction ability 
was assessed by performing a leave-one-out cross 
validation (LOOCV). Instead of using the entire 
data set for prediction, we implemented a feature 
selection procedure. It is important to note that 
the feature selection was also performed without  
the left-out sample to be truly unbiased. To identify the 
best predictors for the classification model a genetic 
selection algorithm was used. In short, a two-sample 
t-test was used as a filtering method [43]. One to 
three peaks were randomly selected as a training 
subset from all features with a p-value below 0.001 
and tested in an inner leave-one-out cross validation. 
If the misclassification rate was below 10%, the peaks 
were selected as good predictors. This procedure was 

performed 500 times. The most frequently selected 
features were then used to classify the left-out sample. 
As classifier, we used a binary support vector machine 
algorithm [44].

Results and discussion

Real-time breath analysis by high resolution mass 
spectrometry
One of the main advantages of real-time breath 
analysis is that it provides a rapid response and 
therefore circumvents problems associated with 
sample collection, storage and manipulation. The 
price one pays is that some selectivity is sacrificed 
as compared to traditional GC-MS methods. One 
approach to minimize this drawback is to couple the 
real-time ionization source with a high resolution 
mass analyzer. To illustrate this point, we investigated 
the number of features detected in breath at increasing 
MS resolution. An orbitrap has the option of increasing 
resolving power at the cost of scan frequency and some 
sensitivity. Thus, we detected 660 breath features at a 
preset resolution of 7500, while at m/∆m  =  30 000 it 
increased to 1020 features (i.e.  +55%). Figure S2 of 
the supplementary data provides an overview of the 
number of features detected and scan frequencies for 
the different resolution settings.

To illustrate the importance of mass resolution to 
capture as many compounds as possible in real time, 
figure 2(a) shows an example of how four isobaric spe-
cies are resolved at increasing resolving power. At a reso-
lution of 7350 one peak is observable at m/z 300.0753. 
Inspection of the corresponding time-trace for this fea-
ture indicates that it clearly rises during three consecu-
tive exhalation maneuvers (figure 2(b)). By increasing 
the resolution (e.g. Res ~ 147 000 at 300.0614), four 
distinct features are resolved. It turned out that all four 
resolved features rose upon exhalations (figure 2(b)). 
Hence, even at a typical time-of-flight (TOF) resolu-
tion (m/∆m  =  5000), these fine details would have 
gone undetected in real-time measurements.

An initial stability test of one subject breathing fre-
quently into the mass spectrometer during 3 h revealed 
that this novel SESI source can deliver robust analy-
sis of breath vapors over extended periods of time 
and capture transient fluctuations. To illustrate this,  
figure 3 shows the signal intensity as a function of time 
(~11.00–14.00) for indole (tentative assignment), 
non-2-enal (previously characterized [45]) and an 
unidentified compound at m/z 479.4829 (C32H62O2). 
The overall increase of indole during the course of 
the morning was of a factor of 3, which is consistent 
with previous observations suggesting that indole 
breath concentration fluctuates closely in a circa-
dian fashion [46]. In contrast, non-2-enal remained 
essentially unchanged, while the heavy species at m/z 
479.4829 (C32H62O2) showed a decreasing tendency 
with time. Figure S4 of the supplementary data fur-
ther illustrates the online detection of heavy species. 

Figure 1. The SESI ion source interfaced with an orbitrap 
mass spectrometer used for this breath analysis study.

J. Breath Res. 10 (2016) 016010
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It shows a mass spectrum including background 
chemical noise and breath signals. The inset shows 
one of such breath signals as a function of time for the 
ion m/z 670.1740, which corresponds to a molecular 
formula [C18H18O13N7]+. This assignment was sup-
ported by its nearly perfect match with the theoretical 
isotopic pattern. Expanding the coverage of exhaled 
molecules to species well above 200 Da is one of the 
main strengths of SESI-MS. However, given that the 
response to vapor detection is instrument-dependent, 
real-time quantification is not directly available [7], 
unless a calibration procedure using standard vapors 
is incorporated [21].

Real-time breath analysis in smokers
To complete the evaluation of SEADM’s ionizer, 
we further explored differences in smokers versus 
non-smokers in a pilot study. The t-test revealed 
140 features with masses between 77 and 908 Da, 
which were significantly different (p  <  0.05 and 
FDR  <  0.05) between the two groups. Moreover, 100 
out of these 140 features also showed a significant 
correlation (pcorr  <  0.05) with smoking frequency 
(i.e. cigarettes per day). The top 62 features, which 
were found to be highly significant (p  <  0.01 & upper 
95%-CI(p)  <  0.05 & FDR  <  0.05) are listed in table S2. 
In total, 68 features were found to be significantly 
increased and 72 significantly decreased in the breath 
of smokers. Figure 4 displays the most significantly 
enhanced feature. It shows the raw mass spectra for 
all the participants in the region at m/z 114 (figure 
4(a)). The corresponding box plot, showing the signal 
intensities after normalization, is shown in figure 4(b). 
A plot of signal intensity versus cigarettes/day suggests a 
strong correlation (r  =  0.88; p  <  8.6  ×  10−7) between 
breath concentration of this particular compound and 
smoking frequency (figure 4(c)).

A natural advantage accompanying the separation 
of isobaric species is that isotopic distributions can 
assist determining molecular formulae with higher 
confidence. The high mass resolution and accuracy of 
the orbitrap mass analyzer (<1 ppm) enabled the pos-
sibility of proposing molecular formulae for most of 
the highly significant features listed. Moreover, for the 
most abundant molecules, we conducted real-time MS/
MS measurements, enabling unambiguous structural 
elucidation. For example, the highly discriminant com-
pound shown in figure 4 was identified as trimethyl-
silylacetonitrile. Figure 5(a) shows the overlaid mass 
spectra of the breath mass spectra and a standard in the 
region m/z 114–116. The insets show a closer view of the 
regions of interest, where a nearly perfect match of the 
isotopic distributions is observed. Note how the high 
resolution (R ~ 126 000 at 114.0733) enables resolving 
the isotopic peaks corresponding to 13C (m/z 115.0766) 
and 29Si (m/z 115.0729). The identification was further 
confirmed by MS/MS. Figure 5(b) shows the fragmen-
tation spectra for the standard (top) and the breath 
signal (bottom). Both show a major fragment at m/z 
73.047 corresponding to neutral loss of acetonitrile. To 
our knowledge, this is the first time trimethyl-silylace-
tonitrile has been reported in breath. This compound 
has not been reported in tobacco, either [47]. Neverthe-
less, its closely related compound acetonitrile is a well-
known compound present in tobacco smoke as well as 
smokers’ breath [48, 49].

Further in-depth analysis revealed that most 
of the significant features were grouped in chemi-
cal families (i.e. –CH2-homologous series). In total, 
we identified seven significant homologous series: 
A (C5H8O2–C11H20O2), B (C5H6O2–C9H14O2),  
C (C6H8O–C11H18O), D (C6H10O2–C14H26O2),  
E (C5H8O3–C9H16O3), F (C7H10O3–C10H16O3) and  
G (C6H8O4–C10H16O4).

Figure 2. Resolving power of the mass analyzer is crucial for untargeted real-time breath analysis. (a) Mass spectra of exhaled breath 
recorded at increasing resolution; (b) the corresponding time traces for the top and the bottom features. Note how the signal rises as 
a result of the breathing maneuvers (mins 0.5, 1.5 and 2.5).

J. Breath Res. 10 (2016) 016010
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Figure 6 provides an overview of the relationships 
between the seven chemical families. It shows a heat-
map of the correlation matrix between the identified 
homologous series. The first reassuring observation is the 
fact that within homologous series, the compounds are 
highly correlated. At the same time, we found that series 
A, B and C correlated with each other, whereas D, E, F and G 
formed another block of correlating compounds. Inter-
estingly, series A, B and C were significantly increased 
in the breath of smoking subjects (table S3 of the sup-
plementary data). Series A were 4-Hydroxy-2-alkenals  
and B 4-Hydroxy-dialkenals. For example, figure S3 of 
the supplementary data shows the MS/MS spectrum and 
theoretical and experimental isotopic pattern of hydroxy-
2,4-hexadienal. This particular compound showed the 
highest average increase (1.84) in smokers within series 
B. Hydroxy-2,4-hexadienal is thought to be directly 
related to tobacco smoke because it is a metabolite of 
benzene, which is a prominent compound in tobacco 
smoke [47, 50]. Besides this exception, the rest of com-

pounds of series A and B could be proxy indicators of 
oxidative stress [51]. This is indeed expected because 
oxidative stress is one of the main consequences of 
tobacco smoking [52, 53]. Among these compounds, 
we found 4-hydroxy-2-nonenal (p  <  0.001), which 
is perhaps the most widely studied lipid peroxida-
tion product [54]. While a number of methods exist 
to monitor 4-hydroxy-2-nonenal in tissues and breath 
condensate [55, 56], only recently it has been unam-
biguously detected in real time in breath [45]. The fact 
that all the compounds, except for C7H12O2, of the 
4-hydroxy-2-alkenals (A) and 4-hydroxy-alkadienals 
(B) series correlate (p  <  0.05) with smoking frequency 
suggests that the degree of oxidative stress was actu-
ally monitored by breath analysis. This is consistent 
with previous studies associating cigarette smoking  
and measures of lipid peroxidation such as breath 
ethane [57]. All these observations indicate that 
not only exogenous compounds (e.g. trimethyl- 
silylacetonitrile) attributable to smoke itself can be 

Figure 3. Temporal evolution of three exemplary compounds detected in breath of one subject at different time points plotted as 
boxplots (red  =  median, box  =  interquartile range, whiskers  =  range).

J. Breath Res. 10 (2016) 016010
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Figure 4. Differences between smokers and non-smokers: (a) overlaid breath mass spectra of all subjects in the region around the 
feature at m/z 114.0733; (b) box-plot of the average intensities per subject, split into smokers and non-smokers—this compound 
was significantly increased in smokers; (c) linear regression between the peak intensities of the feature at m/z 114.0733 and smoking 
frequency.

Figure 5. High resolution/high mass accuracy and MS/MS capabilities enables structural elucidation of exhaled compounds:  
(a) isotopic distribution of trimethyl-silylacetonitrile standard (dashed line) and breath signal (solid line); (b) head-to-tail plot of 
the fragmentation spectra of trimethyl-silylacetonitrile standard (top) and breath signal (bottom).

Figure 6. Heat-map of the correlation coefficients between the –CH2-homologous series, which differ significantly (p  <  0.05) 
between the breath of smokers and non-smokers.

J. Breath Res. 10 (2016) 016010
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monitored, but also some of the physiological conse-
quences of smoking.

In contrast to the rest of the series identified, series 
C (i.e. alkyl-furan derivatives), are all exogenous com-
pounds associated with tobacco smoke [58]. Herein we 
observed alkylfurans with alkyl-residues expanding 
from C2 (i.e. ethylfuran or dimethylfuran) to C7, all 
being significantly increased in exhaled breath of smok-
ers. Consistently with previous GC-MS breath studies 
[59], we found the smallest compounds of the series 
to be highly discriminating and, except for C10H16O, 
the whole family highly correlating with smoking fre-
quency.

In contrast to the hydroxyl-alkenals, hydroxy- 
alkadienals and alkylfurans, series D, E, F and G were 
all significantly less abundant in the breath of smokers. 
Hence, it is reasonable to attribute them to a systemic 
origin rather than smoke/tobacco constituents. These 
series of compounds were all fatty acids (detected as 
[M  +  NH4]+ adduct). These series were assigned 
to alkenoic acids (D), oxo-alkanoic acids (E), oxo- 
alkenoic acids (F) and alkendioic acids (G). The reasons 
why these compounds are systematically decreased in 
the breath of smokers are unclear. The fact that fatty 
acids are common precursors of aldehydes in lipid per-
oxidation routes suggests that the series of aldehydes A 
and B are enhanced in smokers at the cost of decreased 
levels of lipids. The connection of these compounds via 
metabolic routes, however, remains to be established. 
Along the same lines, prior metabolomics studies have 
suggested significantly altered profiles of plasma fatty 
acids profiles for smokers [60].

Finally, when we attempted to predict smoking sta-
tus based of the breathprints, the feature selection and 
classification algorithm yielded an out-of-sample clas-
sification rate of 100% (sensitivity  =  1, specificity  =  1). 
The chosen predictors with their selection frequency 
in parenthesis were m/z 121.0317 (17), 114.0733 (14), 
187.1147 (4), 113.0597 (2), 114.0631 (2), 115.0729 (1). 
The most frequently chosen predictor corresponds to 
a molecular formula of C4H8O2S (0.4 ppm). The fact 
that this compound was found almost exclusively in the 
breath of smokers suggests an exogenous origin. While 
it could not be unambiguously identified, it might cor-
respond to 1,1-dioxide-tetrahydrothiophene (sulfolan) 
because it is a known compound in tobacco smoke [47]. 
The second most frequently selected predictor was tri-
methyl-silylacetonitrile. Not surprisingly, its isotope at 
115.0729 Da was also chosen once as a predictor. For 
the third predictor (m/z 187.1147), we found two pos-
sible formulae, C9H18O2Si (1.2 ppm) and C10H18OS 
(2.4 ppm). However, the signal intensity was too low to 
confirm unambiguously the molecular formula based 
on its isotopic pattern. Despite the relatively high mass 
shift, a database and literature search indicated the lat-
ter as the more plausible formula, as 8-mercapto-p- 
menthan-3-one is a compound that has been reported 
in tobacco. The features m/z 113.0597 and 114.0631 
correspond to the benzene metabolite 4-hydroxy-2, 

4-hexadienal (figure S3 of the supplementary data). 
Follow-up measurements should be conducted to 
assess the prediction power of these four compounds.

Conclusions

We present a breath analysis evaluation of a commercial 
add-on to upgrade a pre-existing atmospheric pressure 
ionization mass spectrometer with a SESI source meant 
to analyze vapors at trace levels in real-time. As a result, 
(i) we were able to measure around 1000 breath features 
per subject, including species heavier than 900 Da, 
thus greatly expanding the available mass range of 
current state-of-the-art on-line breath analysis; (ii) 
the high resolution/high mass accuracy and MS/MS 
capabilities of the mass analyzer enabled us to provide 
molecular formulae and in some cases unambiguous 
identification of breath compounds; (iii) in a pilot 
study including nine smokers and 10 non-smokers, 
we detected multiple compounds in exhaled breath 
that were highly correlated with smoking frequency. 
Exogenous compounds as well as systemic metabolites 
related to oxidative stress were identified, suggesting 
that both tobacco chemicals as well as physiological 
implications of smoking could be simultaneously 
detected; (iv) such detailed instantaneous breathprints 
enabled predicting smoking/non-smoking status with 
100% accuracy.
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